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Higher Effective Actions for Bose Systems
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Abstraect

We study the generalization of the usual effective action I'[®] of Bose systems to an explicit func-
tional I'[®, G, «,, «,] of field @, Green’s function G, and three- and four-point vertex functions
a3, &4. The equations of motion following by extremization with respect to @, &, x,, &, provide for
non-linear integral equations whose solution can account for a wide variety of non-perturbative
effects: Condensation of particles, pairs, and three and four-particle clusters. There can be spon-
taneous generation of mass as well as of interaction.

I. Introduction

Phase transitions are the most dramatic manifestation of non-perturbative effects in
physical systems. It is well known that the loop expansion of the effective action I'[®]
provides a powerful tool for a discussion of the ensuing phenomena [7]. The effective
action I'T®] is the Legendre transform of the generating functional W{j] of connected
Green’sfunctions. Its great technical advantage liesin the fact that the explicit caleulation
of the loop expansion involves expressions which are very similar to those occurring in
perturbation theory except that the propagators depend again on the field quantities [2].
This causes a strong non-linearity of the resulting equations of motion and corresponds
to an infinite string of normal Feynman graphs being summed up in a single term.

It is also known {3] that the understanding of non perturbative effects can be driven
further by continuing the technique of Legendre transforms to include also the fully
interacting two point function & as an explicit variable into I'[®@], forming I'[®, G].
Then the equations of motion allow not only for a condensate of the initial bosons but
also of bound-state pairs of these.

This represents a decisive progress since it can easily be seen that there are certain
models of the spherical type with infinitely many components which at the two-loop
level of this effective action are solved exactly. Since most physical systems have only a
finite number of components it must be expected that an extension of the technique of
Legendre transform can bring a further imiprovement of the theoretical understanding
of fluctuation phenomena. It is the purpose of this paper to preseut such an extension in
detail. Some results have already been published elsewhere, in particular for the simpler
case of Fermi systems where there are many applications in nuclear physics.

The essential results consist in non-linear gap type of equations also for coupling con-
stants such that there can be spontaneous generation not only of mass but also of inter-
action [4].

1} 1000 Berlin 33, Arnimallee 3

1 Zeitschrift ,,Fortgohritte der Physik*, Bd. 80, Heft 4



188 H. KLEINERT

II. The Generating Functional

2.1. General properties

We shall address ourselves to a general theory of interacting boson fields whose action
reads

_ 1 . 1 1, ,

Aly] = g} + Ag) = 5 @G ¢ — 57 Vappy — 7 Varree- (1)
The field ¢ has space time and internal degrees of freedom which may all be collecierd in
a single index x which, in turn, is suppressed in the notation (1). The potentials T’y and
V, may depend on three and four x variables, respectively. The matrix ¢G4 ! confains
the kinetic part. For a scalar relativistic field has of the form

1@ = —[] — m* (2)
where m? is a mass matrix.
In the notation (1) the fields are assumed to be real. If this is not the case we find it
convenient to keep the same notation which is always possible if we combine the field,
say o, and its complex conjugate yp* to a doubled object

— () = ¥ . 3
v (%) ("P+) )

The index 1 and | vor the doubling may again be absorbed into the variable z. Thus we
remain with a simple looking action of the ¢3, ¢* type whose main complication con-
sists in the potentials V;, V, being tensors of rank three and four in the index z. The
field either is real or, in the case of complex initial fields, quasi-real in the sense that ¢ 1s

similar to ¢t via
01
P (1 0) ‘4 E)

The standard non-relativistic many-boson problem is contained in the latter formulation
in which case the kinetic part of the action reads

iyt — (O Frar 8)

ity —e O

—
il
—

where ¢ is the matrix of single-particle energies. The potential 7y vanishes and tire po-
tential ¥, may be related to the standard form of the interaction (x = space time = in-
ternal index)

1
- 7 'i’c.ﬁy:!/’ﬁwﬂ’f/)ﬁ?/’a (6)

by simply choosing ¥V, with the doubled indices x = «1 or x| as

V4 alftydst — 2?};3},5 = :—}: 174 fralylat == ee. !:-.{.)

and determining the others from symmetry in all four doubled indices. Moreover due
to (6), V, has to vanish if the number of up and down entries is not equal such that
particle number is conserved.

Actually, fermionic systems may be described by the same formalism even though the
sitnation there is much simpler and has been discussed elsewhere [4]. We shall, however,
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find it useful to keep the fermionic alternative in the picture, for comparison. Tt usually
amounts to a second alternative as fas as sugns are concerned which will be marked helow
the boson sign. This explains the minus sign in (7) and the lower signs in (5) since, for
fermions, V, and ¢¢ arc antisymmeetric in the doubled indices. The full quantum field
theory is contained in the set of all »-particle Green’s functions involving the fully inter-
acting Heisenberg fields

GOy e @) = (Tplay) - -+ - @) (8)

The symbol { ) denotes the ground state expectation value. Alternatively we may deal
with the generating functional?)

Z[7] = (Lettr) (9)
from which all G"’s can be obtained by functional differentiation with respect to the
auxiliary external source j:

Gy ...xy) = Z[§]7 0

Wiy 167(2,)

Z15] (10)

if one sets j = 0 at the end. For technical reasons it will be convenient to define the ob-
jects G via equ. (10) also for § == O and call them the n-point functions in the presence
of the source j.
For fermions we use the same rules but have to agree that the source is an anticommut-
ing object

jlo) jy) = —i(y) i) (11)

in order to cope with the antisymmetry of G™(x, --- x,) under exchange of two of its
variables.
The set of all Green’s functions generated by Z{4] is not very economic to deal with since
they are, in general, disconnected. Therefore it is preferable to worle with the logarithm
of Z[7]:

Wil — — log Z[j]. (i2)

This is known to contain only connected diagrams, a property which will emerge later as
a result of explicit ealculations.

The generating functional (12) may be calculated in the interaction picture of quantum
ficld theory where it is shown that

4] = A70| et nliin () (13)

The normalization factor 4" collects the infinite phase aquired by the vacuum through
the interaction
T (0] ¢l [0y (14)

Since the most important property (10) of Z[j] is independent of .4 this factor will from

now on be omitted in the definition (13). The ficld ¢, follows the free ficld equations and
has the propagator

I l ¢
Go(r122) = (Of Lgo(ry) gol:) 100 = po{ay) @ols) (15)

with |0) being the free ficld vacuum.

The calculation of Z{j] proceeds as follows: Since the operator ¢, may be generated by
(1/7) 6/0j acting on the exponent we may write A [gy] = Aint[(1/¢) /67| such that the
interacticn is no longer an operator and can be removed from the vacunm expectation

%) In accordance with (1), jp means 3, j(x) p(x).
€
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value obtaining
Z[f] = etd™@DGIDIZ[5]. (16)

Here we have introduced Z% ] as the generating functional of all free Green’s functions.
This funectional can be calculated very simply. For this one uses the free equations of
motion

1Go tpo = 0 a7

and the canonical commutation rule to derive [ 1}
. 1 . -
WGyt — Z°j] + 471 = 0 (18)

where a subscript denotes functional differentiation, i.e. Z; = 6/6;j Z. This equation is, of
course, just a reflection of the operator equation of motion in the presence of the source j

WGy lp 4- 7= 0. (19)
The equation can be integrated?) to obtain
ZO[j) = e 1R (20)

if the free overall factor is adjusted to make Z°[0] = 1; just as in (9).

The generating functional (20) can be expanded in powers of j and exhibits the general
free n-point functions as a sum of products of two-point functions in accordance with
Wick’s theorem : For n fields @g(x,) - .. @olx,) in G, there are (n — 1)!! pair contractions,
each amounting to a Green’s function G(x;z;) for the corresponding pair (2k). The graphi-
cal representation of this expansion amounts to a sum of combinations of disconnected
lines each of which represents Gy which is the only connected subdiagram.

Contrary to this, the exponent

W] = —ilog Z°[j] = = jGj (21)

—

contains the only connected graph Gy of the free theory. 1f the subscript ¢ is meant to
collect the connected subsct of all graphs, this amounts to the trivial statement

G = 0y,2Go - (22)

2.2. Differential equations

The standard perturhation series for Z[j] can be obtained by expanding (16) in powers of
Airt and executing the functional differentiations.

Alternatively, we may combine (16) with (18) and derive an analogous equation for the
interacting generating functional

1 0 e iai
Gy ! = Zi[i] — [j, cHianenil] Zog) 4 jZ[j]

. 1 . I - N 5
— i 7] + Ay | 2 i o, (23)

3) This is unique only in Euclidean space or, alternatively, if G has a proper ie prescription.
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Inserting (1) this can be written more explicitly as

I B 1 1 1 1 oo .
For the generating functional W{j], this amounts to
(1 -1 1.1 2 117 1. w W3y L g 5
Multiplying with —iG, gives
W Gy 1y o (W W2 @, V ! W SW. W W3 4Gy
p= il 5y Ve 5 (W, — i) = Gz Vag GWyy — 3W5 W, — W 8) G
(26)
We now introduce the interacting connected m-points functions G,™(x, ... x,) in the
presence of the source j as the functional derivatives of W]
1 4 0
Gy .. 5,) = W] (27)

i i) Oj(a)

and find for them the equation

1 1 :
Gt = =l gy ValG® + GG — iy o5 VG + BGDCD £ G0%) |- il

(28)
Observing that
Q. l j G D — i n-1), (29)
v o7
this can also be written as a differential equation for G,
1 ) L. . . oy
AW = _q, Bl (Gc(l)j S CASICI R B AR 1 (ch“)jj _ 3@6’(1)7_@6(1) — 1GR3y L G5
(30)

2.3. Perturbation solution

This eguation can be solved iteratively as shown in Fig. 1. Once G, is known, the gene-
rating functional W[j] follows simply by integrating functionally in j:

Wiil= [ Dji Wil = [ Dj @™ (31)

which amounts to multiplying each term by § contracting the index x and dividing every
power j* by n. This can best be done graphically as shown in Fig. 1.

Notice that this procedure leaves open the additive constant W[0]. It has to be cal-
culated using the perturbation expansion (16) for Z[0]. This results in the sum of all
vacuum diagrams which are those composed of vertices V,, ¥V, and propagators G,
without any external line. Taking the logarithm of these, W[0] collects only the con-
neeted subset of these diagrams. This is illustrated in Fig. 2.

We can now counvince ourselves by inspection that the connected Green’s functions de-
fined as the derivatives (27) of W(j] are indeed connected in the naive sence of the word as
far as their graphical representation is concerned.



192 H. KLEINERT

®
TN wiil-pe—e- 4 8O- 4 " --%a@/ )
—O -6 - wilil o
=%
n -————=GD /K 4
() .t~ ()
=G: . =TGR - .
€. c /L Va —® -]
1 2 Py - ~

Fig. 1. The differential equation for @ = G® = H[4] in the presence of an external source and its recursive solution. Fat
legs correspond to derivatives with respect to the source j. The generating functional W[jlof connected Green’s
funetions is obtained by functional integration with respect to 7 which amounts to ¢losing the free line by a j source

and dividing each term j» by n.

Using the exponential relation between W and Z we can derive the rclations between

the n-point functions G and the connected ones G, as
GO = G,
G = (@ == (G L
GB) = @3 - (G, 50,0 + 2 permutations) 4 G (13
G® = 3d.® L (G,3GF, (1) - 3 permutations)
2

(@06, +
+ (@G, ME, M 4+ 5 permutations) -+ G4

permutations)

3

2o} =11 OO (OQOQ@QO@ «O O
=9XPW£°]=9XD[1-} OO-4 (®+O€)(>+ OiQ)Jr]

=G — = Vy/3! X =y jat

Fig. 2. The vacuum graphs contained in Z{C] are an exponential of the contiected graphs in iW[0]
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‘hese ean be inverted to give
Th h verted t

G, = Guw
G, — GE& . GOGED (35)
GC(B) = (3 — 3G(2)G(1) __JI_ 2G(1)3 (36)

G4 = @@ — 4GEGL L 12F@OGED2 - FED2 — GEOA (37)

where the numbers indicate how many permutations have to be formed of the product
of Green’s functions behind them. In the future we shall always use this abbreviated
notation.

For fermion Green’s functions the connectedness structure is the same if the indices are

ordered such that they are even permutations of each other, otherwise there is a minus
sign,

III. The Effective Action

3.1. General properties

Since the beginning of niodern theoretical physics, variational principles have played
an important role in the formulation of equations of motion. In classical mechanics and
electrodyvnamies, particle orbits and field configurations are obtained by extremizing
the action with respect to variations in the path. It is gratifying to realize that similar
princ¢iples can also be found for the observable quantities of quantum field theory. There
exists a whole sequence of functionals I'TG, M, G,3), ¢, ®), ...] whose extrema determine
the set of connected Green’s functions contained in the list of arguments for arbitrary
many-body systems [1, 2, 3].

In this section we shall consider only I'fG ™). This functional is introdunced as the
Legendre transform of the generating functional W{j]

e = Wit — Wililj (38)
where by definition of W{j]
G, W) = Wimlj] (39)

is the expectation value of the field operator in the presence of the external source j
G D(x) = Wiw[j] = (plx)); = P(x). (40)

Conventionally, the capital letter @(x) is used for this field expectation and we shall do
the same. The physical situation corresponds to zero source § in which case @ = @, deter-
mines the expectation in the ground state. This is an important physical quantity since
it informs us about the presence or absence of a condensate of the bosons ¢ in the ground
state.

For fermions, @, always vanishes since there can be no state which is a superposition of
an even and odd number of fermions. This is why fermion systems are simpler and have
heen treated separately before [4].

The important property of this new functional comsists in the following: 1f I'T®}) is
differentiated with respect to @, we obtain

Fcp(:c)[@] = (Wj ~ D) fzb(x) — j(xy = —i(x). (41)

%) From now on, we shall always use the variable @ for G,1).
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Since the physical situation corresponds to j = 0 this means that IT®] is extremal on
physical field configurations @. Thus the functional I'[@] plays the same role in quantum
physics with respect to the field expectation as classical actions do with respect to par-
ticle orbits. This is why I'[®@] is called the effective action of the system.

3.2. Differential equations for the effective action I'T®]

It is quite simple to determine I'[@] via differential equations which are a direct conse-
guence of equs (29) for W[j]. For this we go to the variable @ by using W; — @. Ditfe-

rentiating this gives
Wi= @ = (o) = —Las (42)

where the inverse is understood in the matrix sense. But —7W;; is the connected Green’s
function such that we recognize and important property of I'[®]:

Tl ®] == iG @1 == iG-1 (43)

i.e. the second derivative of the effective action determines directly the connected two-
point function of the system. Since G, will occur quite often in what follows we shall
denote it simply by G. Differentiating (43) once more gives

Wisi = —Las 5 i X Tog - Toao. (44)

Since W;;; is the connected three-point function —G,®) this amounts to the relation

ii
'L.F(D@q, = GA]G41G_1GC(3) . (4:5)

We have omitted indices which are such that each index in &, is contracted with one of
the indices in @. Equ. (43) has a simple graphical meaning: The Green’s function G,
collects all connected Feynman graphs with three external legs. The matrix multipli-
cation by G-! on each index amounts to amputating the three external legs. The rc-
maining amputated connected three point function is called three-point vertex function.
Thus the third functional derivative of the effective action I'[P] is the threc-point vertex
function.
We now use (39), (42), (44) to rewrite the differential equations for W[j] as an equation
for I'[D]

WGP — L Vi -+ B o VilG5iTans + HIGH0  B%) — Lo = 0. (46)

21 31

This can be solved by iteration. For V3 = V, == 0 we find the free effective action
. | -
D] = > DGy 1D (47)

which is precisely the same as the free action A%¢] except that the field operator ¢ is
replaced by the expectation value @. Before proceeding with the iteration it is convenient
to use I'Y and separate off the interacting part of the effective action as

I?) = ré] + o] (48)
such that
Loy =Gy + 'Y (49)

]’rp(pv;. = ,r,,lp[:]pth (50)
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and (46) becomes

L 1 . 1 1 1 )
Ipint - s V@2 — 5 VD3 — o (Vy -+ V,0) G — 37 VGBIt HB1)

where the Green’s function is given by (43) and (49) as
G = Gy(l — Gy 2. (52)

Expanding the denominator and recollecting terms this can also be written as an integral
equation
G - Go —}— ?:GOIW(};%'G. (53)
At this point it is useful to introduce a quantity X called the self-energy which is defined
by
Q = i[iGy~t — XL, =i, — G 1. (54)
Comparing with (53) we many identify

= —Iyy. (53)
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Fig. 3. The integral equation for I"int{9 | and its graphical iterative solution up to second order in the potentials
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Equations (51), (52) will be solved iteratively. Before starting it is useful to observe that
there exists a trivial relation between I'[®] and DI, which merely consists in a factor
1/n in front of cvery power @". Thus it is not necessary to aleculate I'pi™ but we may
multiply (51) by @(x) and contract the indices z. The resulting equations are displayed
graphically in Fig. 3.

3.3. [terative Solution for the Effective Interaction

We can now proceed by iterating (51), (52). Neglecting on the right-hand sides I'i®t, we
find the first order correction

1 1 1 1.
THBY = — 5 Vi — S Vit — = VG — - ViGod?. (56)

Two pieces In this are simply the interacting parts of the original action A"[@] with
¢ replaced by @. The other two pieces are new. They correspond to partial contractions

in the interacting part of the action and setting ¢ = @ in the remaining uncontracted
fields

1 1 -
1 1 4.3
—_ ZT V4Q‘J4 — —Zi V4 _—é-_ (/)l}‘@@ - (58)

The iteration can be continued be in a graphical way and this has been done up to the
next order in Fig. 2

I we imagine proceeding to arbitrary order we discover an important topological charac-
teristic of the graphical expansion: When cutting a single line G, none of the graphs de-
composes into disconnected pieces. Such diagrams are called one-particle irreducibie
(OPT).

It is easy to recognize the general rule according to which one can find all higher order
contributions: One simply writes down the action in which the field ¢ is translated by
the expectation value ¢ = @ |- ¢":

au‘:[(f ] = A{d) + '3 ] == ‘4[@] -+ Aqux[‘iy’] + A;.!&tx{(pll

1 . , r ., | . ,
= A[D]+ 5 ¢iG Yy + [~—2~ Vaiy! — 5 Vi@

1 he IR 1 7 2 19 1 ’ L roor =4
) Vi®gp™ — 1 Ve — 31 (Vs + V@) g — 11 1’4(174] (59)

and calculates the one-particle irreducible subset of all vacuum diagrams arising from
the different interaction terms using G as the propagator of the shifted ficld ¢". There is,
however, one exception to this rule: We must leave Out all one-particle reducible dia-
grams. In particular, the two terms in (59) lineal in ¢’ may be dropped. This, of course,
reflects the fact that by definition, the field ¢’ has a Vathmg expectation (¢’ = \tp§
— (@) = 0. Thus the sum of all graphs connected to a single ¢’ leg must dxsappear since
these would ceratainly be one-particle reducible.
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3.4. Non-perturbation solution

When solving the differential equations (51), (52) iteratively we found empirically that
the anxiliary action A4,,,[¢"] supplies precisely the correct Feynman rules. The graphical

exparsion was, however, somewhat unconventional. There are two terms in AN [¢']

1 1
—5 Valy'? — V" (60)

which bave been treated like an interaction even though they are quadratic in the field ¢'.
Thereiore in the usnal procedure of splitting an action intofree and interacting part
Alg'l = A%p'] + Aivt[¢"] these terms would have been considered as part of the free
action A%¢’]. Tn this case we would have arrived at a free propagator

1 -1
G — 4 [7;9041 — Vb — V4®2} (61)

for the ¢’ field rather than G, and would be left only with the interaction

1 i

A = — g (Vs -+ ViP) " —

Vag0'8. (62)
@

Now I'f@] — A[®P] would collect all vacuum diagrans involving G® and these two vertices.
By comparing this graphical expansion with the previous one we find that they are the
same, order by order, if the denominators in the propagators are expanded in powers of
Vs and V,. There is only one infinite family of graphs which cannot he obtained by the
new rules and which has to beincluded separately : It consists the single loop diagrams with
an arbitrary number of @ lines attached to them (see Fig. 3). It can be verified by looking
at the iteration that these are of the form

; o 1 "/
— (—Q_) tr “ST |?l:G0 (]:rr;([) +’ '—")—“ V,l@(p)] /7’1 . (63)
) n=0 -

They can be collected in a single expression
7 1 I
5 trlog (G771, (6
Thus the effective action may be expanded alternatively in the form

@] — A[®] - ?"’ tr log (3G-1) + N AP T, - VD, V) (65)
graphs

where the sum covers all OPI diagrams with propagators (61) and vertices (62).

This alternative way of calculating the effective action within the shifted field theory
puts 113 1n a position to learn what is the graphical conteut of I'[@] at vanishing effective
field @ = {(p) = 0. This quantity was inaceessible in the previous iteration scheme since
I'{®] was obtained from a differential equation which gave no information on I70].
What the iteration did disclose was the one-particle irreducibility of the graphs. By re-
expressing the action in the forni (59) in terms of the fluctuating part ¢’ of the field, these
graphs turned into one-particle irreduncible vacuum graphs involving lines G and vertices
V, Vi -+ V@, Butin this latter formulation we may simply set @ = 0 and see that [{0]
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still collects all one-particle irreducible vacuum graphs but now constructed from the ori-
ginal propagators Gy and vertices Vy, Vy, l.e.

Mol = N (G, Vi, V) 4+ const. (66)
arphs
This is to be contrasted with I'|@,] where @, is the field at § = 0, which coincides with
W{0] due to
W[0] = I'fdy] — 0 - @, (67)

and therefore collects all connected vacuum graphs involving Gy and V4, Vy, i.e.

1Dy = E (Go- Vs, V4)- (68)
all connected
vacuum graphs

Jt may be worthwhile seeing this result once more from the point of view of the genera-
ting functional W[y] Let §, be the current which would force the field expectation @ to
vanish. Then there is the Legendre transform converse to (67)

such that we see that I'[O] coincides with W[j,]. Thus while W[0] collects all vacuum
graphs, W[j,] picks out only the one-particle irreducible subset among these. Since W{j,]
can be expanded in terms of connected Green’s functions as

Wlje] = V —"G (n)( s 2) Jolwen) o- Foly) 3(70)

n()n

this statement amounts to the fact that j, is just the correct value capable of subtracting
from W[0] —= GO(x, ... x,) precisely all one-particle reducible vacuum diagrams. In order
to appreciate this statement it should be remembered, that due to (48),

Jo = — Ipf0] = —I'oi[0] (71)

collects all one-particle irreducible vacuum diagrams linked up to a single ¢ leg. Thus,
except for W[0] = G('9, each term in (70) with n = 1 is certainly one-particle reducible
and according to what we have just learned about W[j,] being OPI, these must be all of
them!

3.5, Phase transitions

The new non-perturbative expansion of /[®] has decisive advantages over the origiral
perturbative one. The most important of these lies in the possibility of describing phase
transitions. This can best be illustrated by looking at the simplest case of a relativistic
local gg* theory. Perturbatively, it can be calculated only as long as its mass? is positive.
Allloop integrals in the Wick rotated form contain denominators of the form (p? -+ m*)~t
and there are no problems in evaluating them at small momenta. In many systems, how-
ever, which may be described by ¢ theory, the mass term is strongly temperature depen-
dent and changes sign at some critical temperature 7'.. Below T, the Feynman integrals
are no longer defined. The effective action, however, can still be calculated if one uses
the non-perturbative graphical rules derived in the last section. First of all we observe
that without any vacuum diagrams we had as lowest approximation

I®] = A[®]. (72}
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For m* < 0 we sce that there are two values of &, for which I'[®] is extremal namely

D = Py = 0 (73)

D — Py = — V{;;, : (74)

Since both are time independent the effective action may be used to calculate the energy
of these states as

By = — o I1®y]. (75)

Conventionally one defines an effective potential from the action density at arbitrary
constant fields @

1
S & 76)
Volume - 7 H12] #=const. 76

V(@) =
such that Ky = Volume - V{®,]. Then one notices that the energy corresponding to the
extremum (73} vanishes while that of (74) is negative

m* 3!

Eo == _“_4‘ p . (77)

Thus (74) will correspond to the physical ground state. The nonzero value (74)

(@) = By + 0 (78)

is interpreted as a signal for the condensation of ¢ particles in the ground state and (77)
is called the condensation energy. Inserting the typical temperature dependence of the
mass term close to the critical temperature

m? A u? (,‘_n — 1) (79)

we gee that there is a phase transition of second order: the energy which vanishes for
7" 2 T, goes smoothly over into the condensation energy energy (77). The specific heat,
however, ¢ = —1'(d?£[dT?), has a jump at T,

The important point is now that below 7', the Feynman graphs involving &, can no long-
er be caleulated but the new ones with propagators G can. They have the form

(p* + Mt (80)

where the effective mass term is a functional of @. Now, at the ground state value @,, this
mass term is

_ 1
M2 = m? | > gDy = —m2 >0 (81)

such that there is a whole neighbourhood of the ground state value for which the new
Feynman integrals are well defined.

In general, if the potential has a stable minimum at @,, the effective masses of the modes
deseribed by the propagator G2 will be of two types: either they are positive or they van-
ish for 6@ along directions of symmetry transformations. The latter are the Nambu
Goldstone modes. In either case, there are no negative mass squares and the Feynman
graphs.can be calculated.
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3.6. Reconstruetion of all Green’s functions from effective action

The effective action was introduced in order to make extremal principles available for
the discussion of Green’s functions. Up to now, the information contained in the extre-
mum is rather scarce since it deals only with the vacuum expectation of the quantum
field. It must be pointed out that even though I'[®] involves only this one-point funec-
tion explicitly, it nevertheless contains information about all Green’s functions, except
that this has to be extracted from the functional derivatives at the extremum. Only
later shall we develop effective action in which also higher Green’s functions can be
obtained from the extreraum itself. Let us here show how all Greer’s functions can be
reconstructed once the effective action is known | 1].

When deriving the differential equations for I'[®@] we have already noticed that the
second tanctional derivative is the inverse of the connected two-point function and that
the third derivative is the amputated connected three point function. In order to see
how the higher Green’s functions can be obtained from I'l@] we differentiate (44) once
more with respect to § and find

o A7 ‘ r
I/V]'afafzﬁ.l - T/V]'djs?'a’ W [ETIY Wflfl'F@S'@z"bﬂ + Wfsfa’ I/V?-tfzfz’w :iljl’r¢3'®2'®1'

+ IP ?s]n’IV.?z?z’ IV}Jh’F@s’q’z’q’ﬂ i W?4?4'TV]3.JJ' IV]E?“ III/ 7111'F¢}4’¢3'¢2'@1” (8“)
where the indices x; have been replaced shortly by i itseif. Using equ. (44) once more, this
can be rewritten as

1i;1[?'43"31"2]'1 == {U Jada I/L ]3?3’F@4’¢ Dy II :'5?5'1 DDy Py W/«]z fa ”/ hth

- (2 permntations of (12) (34N} -+ Wi Wi Wi Wi e popeme,  (83)

Fafar
which amounts to the following relation for the connected Green’s functions

GH = (0, .G 1 0.00 0,006, 1 (2 permutations of (12) (34))}
—|— G“,G (I Gu,?:,rgpi,(pﬂ,(pz,(p],. (84)

The result is displayed graphically in Fig. 4. Thus given the effective action, the four-
point fuuction is found simply by calculating the derivatives of I'J@] up to the forth order
and constructing all diagrams involving the legs Gf and vertices I'p.....q but without form-
ing any loops. Because of their physical appearance these are called tree diagrams.
Notice that allloop integrals of the original Feynman diagrams are contained in the pro-
pagators G and the higher vertex functions I's.....[@]. We now understand why in the
calculation of I'[@] there appeared only OPI graphs: All one-particle reducible contri-
butions to the higher connected Green’s functions come from the tree like composition
of the OPI graphs contained in ¢ and the vertex functions. By cutting one branch, the
tree decomposes.

The reconstruction formulas for higher connected Green’sfunctions G,™ are best derived
in a graphical way. If we differentiate equ. (83) further with respect to § this amouiits to
adding one subseript j to each W;; which, according to (44) can be represented as changing
a propagator G into a three-point vertex function with three propagators sprouting
from it. The derivatives on the vertex functions, on the other hand, adds one more
Green’s funection leg to it via the chain rule. The procedure is illustrated in Fig. 4 up to
the five-point function.
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hubhle M(‘mtut of the graphs using the rules stated in the middle of the figure

IV. Fluctuations and Loop Expansion

4.1. Path integrals

In the Jast chapter we have derived a non-perturbative expansion for the effective action
1'{®] and seen that this permits a passage of the theory from positive mass® to negative
mass® and the ensuing phase transition. When stating the graphical rules of using the
propagators G and vertices (62) there was one point which remained unclear: What is
the proper parameter of smallness which organizes this graphical expansion? The po-
tential strength can no longer be the relevant candidates since one Feynman graph in-
volving G sums infinitely many V; and V, correction at a time. We shall now see that the
natural systematics of the expansion is provided by the size of fluctuations in the quan-
tum field.

In the usual formulation of quantum field theory, by which we derived the previous for-
mulas. fluctuations are automatically taken care of bv the use of field operators. The
product of two operators

TNl 2 _ :
‘f; 0~m On-’n" - (0102)1112”
»

represents the sum cf all “fluctuating indices” n” which are eigenvalues of somne observa-
bles. When writing the time displacement operator ina product form factorized into many
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infinitesimal pieces
agh DT |y = Tim (gp] (e DTN fg;) (85)

N—>co

and inserting a complete set of intermediate states in the Schrédinger basis

f dqn lQ'n> <€Ir¢l = 1 (86)

between the n'* and (n 4 1)¥ factor, the operator becomes the product of infinitely
many integrals

N—1

lgg) e OET dgs — T [ day (gl e IDITIN gy 15 {gy | e WRITIN g ) - it e GIRITIN fg
n=1

(87)

one at every time t, == n7/N. In the limit N — oo this may be visualized as the sum
over all possible zig-zag paths leading from the initial to the final Lagrange parameter q.
Looking at the exponent closer we see that for a single mass point in an external potential
it is

. 1 1 z
—GRHTIN | N — —_—— CXP 3T N{g,., — 2 7 I 88
<q73+l1 € lQn/ _"/zﬂz/jv b\p {2]11 (qR +1 q;z) ﬁ[\! ] (q?)} ( )
The infinite product can therefore be collected to
1 Rt ... .
e exp 3 s Nigen — 6% — = V() (30)
T T 2 [ Ve =y Ve

such that for N — oo the combined exponent is simply the action of the probiem. There-
fore there exists the following representation for the time displacement amplitude [4]

N—1 — ;
e g =TT [ dan 17 exn {3 At (90)
n==1
where
A = (2aih)FI2; e = /N (91)

is the appropriate normalization factor. The infinite product of integrals is called path
integral and denoted by
N1

Afﬂqu,,/]/é"ﬁqu. (92)

=1

Notice that the path integral representation (90) contains all quantum information on
the system without the use of any operators. The price to pay for this advantage is that
all quantum fluctuations have to be summed explicitly. At first sight this seems an awful
task and in a way it is: Of all quantum mechanical problems which in Schridinger
theory are simply solved by diagonalizing the Hamiltonian differential operator, it was
for a long time only the harmonic oscillator for which the sum over fluctuating paths
could be performed [5]. The other standard physical system, the hydrogen atom, was
solved only very recently by really executing the path integral [6].

While it is very hard to sum over all fluctuating paths there is one important advantage
of the path integral formulation if the physical system is such that fluctuations are
small in some sense. Then it provides a convenient tool for an expansion of observables
in powers of this parameter of smallness. From formula (90) it is obvious that the size of
fluctuations is controlled by Planck’s fundamental constant #. In fact, in the classical
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limit 2 — O there can be no fluctuations. In formula (90) we see that for 4 — O the ex-
ponential oscillates rapidly for the slightest changes of path, In the limit 2 — 0 only
those paths can contribute where these oscillations are minimized which happens at the
extremum of the action [5]

0A[q]
g gh =gatt)

— 0, (93)

This ig, of course, just the extension of the standard saddle point theorem to path inte-
grals. The extremal path is the solution of the classical equations of motion and this ex-
plains the subseript on the variable g (f).

Since & is finite there are contributions to the path integral for ¢(¢) deviating from the
classieal path. If we write

gty = qa(t) -+ dq(d) ' (94)

we may expand the action into classical and fluctuating parts

1
A[(]] - ‘4‘[({(51] -+ '“2_' 6‘]‘4(1'4[(101] 5{] e (95)

The linear term is absant due to the extremality property of ¢ (f). The quadratic piece
contributes a path integral

71
f Dég exp {; o 094 444gc] 69}- (96)

When decomposing this into the infinite product of integrals according to (92) we see
that in each factor f ddq, there is a significant contribution only as long as dq, is of the
order of

VEAQQEQCIJR,'R' (97)

Thus the quantum fluctuations remain limited by this quantity [6]. The important point
to realize is that there are many physical systems in which the interaction is quite large
but nevertheless the quantity (97) remains rather small, i.e. strongly interacting systems
may carry quasiclassical properties. This holds at least within certain limited ranges of
energy and momentum. Examples are large nuclei and superfluid He (both 3He and *He)
where low-energy and long-wave length properties are governed by hydrodynamic
laws [7].

4.2. Path integral representation of quantum field theory

The quantum mechanical discussion of the last section can be carried over to quantum
field theory in a very simple way. Let us begin with the free theory and consider the
Fourier transform of the generating functional Z°[4]

Z%g) = [ Dje #*Z°[j]. (98)
The path integral over the source is defined in analogy with (92) as

Jpi=c]T | dje) Ve (99)

where now the product runs over all doubled space time indices. Here ' is a normalization
factor which will be adjusted later. The inverse of (98) reads
2°) = [ Dye'ZO[p] (100)

9 Zeitschrift ,,Fortsshritte der Physik®s, Bd. 30, Heft 4
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where the path integral over Dg is defined with some other normalization factor C.

Taking the special case Z[j] = 1 the Fourier transform becomes an infinite product of
6 functions called a é functional

Zlg) = 0]_72:15(99(;517)). (101)
The inversc Fourier transform gives
Z{j} = CC [ ] (2z). (102)

Hence we find the condition .
CC =[] (2ne) 1. (1G3)

Let us now use the explicit form of Z°[/] to actually caleulate the Fourier transform.
i SR S TR
L] = j Dj exp Uz iGoj — iy {104)

Since each integral over dj(x;) runs from minus to plus infinity, we may change in cvery
from j to ' = j — G ¢ and rewrite

~ 1 , -
Z%p] = ij’ exp {—-é— j’Gf,j’} exXp {—;— (piGO“lqﬁ} . (105)

The ¢ part does not depend on " and can be taken out of the integral such that we remain
with

Z[p] = A exp {—QL— qoiGOﬁi(p} (106)
where

1
A = ij exp {——E:iGoj} (107)

iz a constant which does not depend on ¢. It can easily be calculated by using the decom-
position (94) as

w =1 [ exv {5 il (108)
For this we merely have to bring the symmetric matrix Gp/z to diagonal form
(Go/Dha — (G [0}y O (109)
via some rotation
j—§% = Kj (110)
and may factorize
N = Olkffd]d(ffrc) exp {——é‘ ?kdz(Go“/%)k}- (111)

The measure of integration does not change since the Jacobian of the rotation is unity.
Now each integral is of the Fresnel type and can be performed with the result

A= O [TV =20 1] (G (112)
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The product of eigenvalnes ean be rewritten in a basis independent way as
1] 1Y (Gy40), == (det Gyf) 112 = (det 1Gy 1)z (113)
or also as
A7 == exp {-—;— tr log iGo‘l} . (114)
The infinite factor has disappeared by choosiﬁg the constant C as

C = [k‘[ Y —2mie * (115)

which we shall always do from now on.
Given this result for Z°[¢] the inverse Fourier transformation reads

2 =N f Dj exp {—;— il 'y + Wp} (116)

But here we realize that the exponent is simply the free action written in terms of the
c-number field variable ¢ such that (116) is the path integral representation of the free
generating functional Z°[7] in complete analogy with the quantum mechanical formula
(90).

There is no problem in including interactions if we use formula (19). Performing explicitly
the ditferentiations with respect to the currents we obtain

21 = JVthp exp {% giGo Y + A [g] 4 ?stv}- (117)

The exponent is the full action of the system: written in terms of fluctuating field vari-
ables. In this way any interacting field theory is brought to the path integral form.

It is useful to notice that the normalization factor 4" can also be expressed in terms of a
path integral over the field ¢ rather than j as

N L = f Dq exp {% (p?jGO_ltp} ' (118)

since the right hand side gives by the same argument as in (108)

AL = [TV 218 ViGy? 1" (119)
k

which together with (103) agrees with (114). Thus we may write
Z[ﬂ _ fque(1:,"ﬁ,)A[gﬂ]+('t‘,”ﬁ)jfp/f que(i/ﬁ)Ao[(P] (120)

which looks very similar to partition functions in statistical mechanics. In this final for-
mula we have reintroduced the Planck constant # which had been set equal to one in the
previous discussion.

For fermion systems, no such path integral representation really exists. There is,
however, an algebraic formalism which can be set up for the anticommuting sources 5
and which may be considered as the generalization of path integrals to Fermi fields.
The only requirement is that it reproduces the correct quantum field theoretic results
known from the operator formalism. It can be shown that all one has to do is define the

oOF
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path integral for Z9[j] to be the same (106), (108), (111) except that the inverse of the dia-
gonal elements appears on the right-hand side. For the normalization factor 47 this
amounts to the exponent changing its sign.

A= A permi = exp {~é tr log iGO‘l}v. (121)

We have seen in the last chapter that such an expression is related to one loop integrals
(see (70)) which now for fermions have the opposite sign of that for bosons. But this is
precisely what is required for ordinary Feynman graphs.

Once (116) has been defined for ferimions, also the interactions can be brought in just as
in the boson case except that the differentiations in the sources are anticommuting
variables. Therefore we have the sameformal expression (117) for theinteracting partition
function except that the normalization factor is inverted. The analogy can be made per-
fect by expressing again 4 jerm; in terms of a path integral over ¢. Then formula (120) is
secn to hold for both, bosons and fermions.?)

4.3. Fluctuation expansion of effective action

Let us now use the path integral representation (120) to expand the effective action
according to the size of fluctuations. To lowest order in #, the exponent is governed by the
extremum which satisfies the condition

AJg] + flompa = 0. (122)

The solution of this is the classical field configuration which depends functionally on the
choice of the external source

P = galil. (123)
Reinserting this into the exponent of (120) we find for the generating functional
Wil = Algalil] + jalil + const. (124)

From this it is easy to find the effective action. The field expectation coincides with the
classical field:
¢ = IV?' - (Arp + j)'zp=«pc1[]’} @e1j palsl. (125)

The first two terms cancel because of (122) such that the effective action becomes at this
classical level
I'®{P] = A[P] + const. (126)

1.e. the original action with the field operator replaced by the field expectation.
Let us now include fluctuations. According to the estimate (97) they will be limited to be

of the order of /% such that we may expand

P(t) = o + Vh gy (127)

If we keep only quadratic fluctuations, the exponent reads

. h
Alper] + fpa + 5 Pl grlgal 91 (128)

5) For more details see [7] and references therein.
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Thus we may rewrite the generating functional as a path integral over the fluctuations

f D(p]gi%—"lzpfp[(%l\q’l
f D(pciwiau-lw

Z[§] = elib lgaltiga (129)

we may now use formulas (107), (114) to evaluate the quadratic functional integrals in
numerator and denominator

Z[7] = e@wlil

z ) 7 7 .
== exp {_f: (Algal + dpe) - — trlog A, ,[ga] — 5 tr log zGO_l}. (130)

For fermions, the last two terms would have the opposite sign. We may now use this
result and calculate the lowest fluetuation correction to the effective action (124} : the
field expectation is

_ ih .
D = IV} = ("4‘P[(P] +-7) ‘p‘i‘qvcl + P ?iqmw[g)?cl]_l Aqwtr[(pcl] Pel -+ 0(}12)' (131)

The first two terms have cancelled again because of (122). Inserting this into (128) we
find the effective action

iy = 9 118 -+ O(h2) = A[®] + m;_ ktrlog A,,[®] + O(2). (132)

We now see that up to this level the effective action agrees precisely with the first two
terms of the non-perturbative expansion (65).
We shall now convince ourselves that by further expanding the effective action in po-

wers of the fluctuation size ]/ﬁ we obtain the prescription (65) also for all higher terms
with the additional advantage that by these powers they receive a definite organization
via a quantity that in many physical systems can he considered as small:
In the general case, the field expectation will no longer lie at the extremum. Let us ex-
pand the field according to fluctuations around @ rather than ¢, and set

P (133)
Then the fluctuation field ¢’ has the property that its field expectation vanishes
¢ = 0. (134)

If we substitute (133) in formula (120) and use our first order results (132) we may
rewrite the generating functional as

Z[j] = bWl
— exp {.;_ (A[D] 1+ jb) 1 —3- trlog A,,[®] — = tr log iGO}

hd ff)rp’e““[‘ﬁ'lff Dq’ei4nlv’] (135)
where

/ 1 ! !
Adle'] = ) P Ao¢[¢} P

. (136)
Auly'| == Al¢'] + AR[g'] = A[D + ¢'] - jg' — A[®]
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is the fluctuating part of the action. Notice that this does have terms linear in ¢’ since
contrary to the low order discussion, @ -+ ¢,; does not solve the equation of motion (122)
and therefore

j o AP, (137)

We now recognize in the fluetuating action our previous auxiliary action (59) which was
derived there heuristically in order to reproduce the correct graphical expansion for the
effective action. In fact, the graphical rules are now an automatic consequence of seeing
the fluctuation factor

Zulil = [ D¢ exp @AJ¢') + Ae'] + jo't [[ P’ exp (2431} (138)

as a generating functional of its own. In it, ¢’ plays the role of the fundamental quantum
field, the quadratic piece

4 1 ! . he ! bs ’
Aly/) = o (it = Vab — 5 V.0B) g (139)

supplies the propagator

. 1 -1
G? = ik [iGol — V@ — Vﬂbm] (140

and the remaining terms give the interactions which depend functionally on the par-
ticular configuration of the field expectation @. There is again a generating functional of
connected Green’s functions

IfVﬂ”] - —1 lOg Zf]['?'] (141)

and it may be used to define the effective action I'y[@'] of the fluctuating part of the
theory where @’ is the expectation of ¢/, i.e.

O =g, Wuljl = Tul®'] + i (142)

The important point is now that we chose @ as the center of fluctuations such that the
I'n{®’] has to be evaluated at @ — 0. This imposes a restriction upon the external
source j which has to be a functional of @ such that @" = 0. But this means that j = j,{®]
plays exactly the saine role with respect to the fluctuating part of the theory as was dis-
cussed in the context of equ. (65) for the full theory. Hence we can conclude that only
one-particle irreducible vacuum diagrams are contained in I'y[0]. Thus we have found
the same graphical rules as before in the non-perturbative discussion of Sect. 2.4.

Let us now see how the parameter of smallness of fluctuations % appears in this graphical
expansion. Every propagator G carries an explicit factor %, every vertex Vy + V,® or
V4 is accompanied by an inverse factor 271, and finally there is one overall factor % in the
definition of I'n[@]. In a vacuum graph, all lines emerging from the vertices have to be
connected with each other. Thus, if there are n, vertices Vy -+ V,® and n, vertices V',
the total power in % is

L= 3n; +4n,)/2 —ng —ny + 1 =ng/2 + ny + 1. (143)

This is the new parameter which organizes the non-perturbative expansion. The ex-
pansion can be truncated after a finite number of terms if the system happens to possess
quasiclassical properties.

The determination of the order of each graph is simplified by realizing that it coincides
with a simple topological property: it is the humber of independent loop integrals in the
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Feymman diagram. For, the total number of internal lines is
(3ny + 4ny)/2

which have to be integrated. But of these, my + ny — 1 are trivial due to an energy
momentum d-function at each vertex. The d-function at the last vertex guarantees total
energy momentum conservation and is usually factored out of the Feynman integral.
Therefore, the power L coincides with the number of loopn and this is why the non-per-
turbative expansion is often referred to asloop expansion. Since its speed of convergence
is determined by the degree of quantum fluctuations, it is also known as quasiclassical
expansion.

V. The Effective Action of the Second Type

5.1. Two particle source

Up to now, we have considered the effective action TG, V] = I'l®] of one argument.
The extremal principle is not very powertul since it determines only the field expectation
@y at j = 0. Even though the complete theory can be reconstructed from I'[®@], (see
Secct. 2.5) the information on the higher Green’s functions is not contained in the ex-
tremum itself but in the functional derivatives at the extremum. It would be preferable
to extend the list of arguments of I'{®] to comparise also these higher Green’s functions
into an extremal principle. The basic reason is the following: For any realistic theory,
I'[@] may never be known exactly. Only some truncated graphical expansion is accessible
to calculations. As in any variational method, if we increase the list of parameters which
may directly be varied we expect to find a better approximation to the true solution.
This will be the case also here.

Let us therefore proceed by one step and search for an effective action

IEWw, @,0] = 1, ¢ (144)

which is extremal for both the connected one- and two-point functions @ and @.

At this place it should be pointed out that in non-relativistic many-body systems,
the two point function does not only describe the usual particle propagators (Tyyp™).
Due to our doubled field notation the diagonal elements consist of the so called ano-
malous Green’s functions (Tyy), (Ty p*) which account for pair correlations. These are
absent in perturbative calculations at any finite order. Tt will be the virtue of the
extended effective action to allow for the presence of these anomalous Green’s
functions. For many physical systems this is essential for a correct description of the
observed phenomena. The best example is the superconductor where the fundamental
particles themselves cannot form a condensate and therefore @ — 0, but pairs of
particles, called Cooper pairs, can, and such a condensate is signalized by the non-
vanishing of pair correlation func,tlons in the ground state. In the exalnple these are
local and observable as a gap in the single particle energy spectrum since it is related to
the breakup energy of the pairs.

The extended effective action I'[@, @] can be found in complete analogy with I'[®]. For
this we introduce an external bilocal source

Asource __ %(me (145)

into the action and consider the generating functional of two arguments

Z[?-’ K-J — Giuf[?'oK] — <T6’iitp+(i/2)¢K¢>_ (146)
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The new source K is not really an independent variable. In fact, the functional deriva-
tives are related by

27y = —iliy. (147}
For W[j, K] this amounts to
20Wy = Wy L W72 (148)
such that
20Wg; = Wiy -+ 200, W (149)
and
Wi -+ 3W; Wy — W32 = 2(Wy; + W W)). (150Y

We may now derive differential equations for W{j, K] just as we did previously for
W[/]. We can save labor by noting that adding the source term (145) leaves the equations
of motion (24) the same as before except that the matrix ?G4! in the free part of the
action is replaced by 7G4 ! 4 K such that

GE = {[1Gy1 | K] (151)

appears in place of the free propagator G4. Thus W[j, K] satisfies the same equ. (26)
as W{j] with G¥ instead of (j and we may use (149) to rewrite (26) as

HAGR) Wy = VoW 5 Vi Wiy 4 W W) 4§ = 0 (152)

which may be solved in conjunction with the constraint (149). We shall not do so but
employ this equation a little later on for the purpose of deriving a differential equation
for the effective action of the second type.

5.2, The combined Legendre transform

The advantage of using the bilocal source lies in the fact that we can now, in a
straight-forward extension of the previous procedure, introduce a Legendre transform of
W14, K] with respect to both source variables

D, G = W), K|--W;j— WiK. (153)
The field expectation @ is now defined in the presence of hoth sources j and K¢)
b = (p)i. = W[, K1 (154)
The same thing holds for the connected two point function
6 = 6 = (Typhk — D W = W7 K1
which is now obtained, from (148), as

2 m 1 .
G =062 = {1 (77‘}7>y',1< — (‘P>?'.K (.(P\]'.K = —%.— Wj;‘[]a K}

i

— oWy — W2 = Wy — @ (155)
or

S S I i

K= (G @*) = 5 (Tegik - (156)

8y The subscripts 4, k£ on {(p) and {Tep) record functional dependencies, not derivatives!
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Writing .
I, G} = W[j, K] — @] — 5 (G 4 &) K (157)

we see that 1@, (/] has, by construction, the following derivatives

Ip|®, Gl = —j — K@ (158)
1
rJo, 6] = a-—;- K. (159)

Since the physical situgtion corresponds to the absence of external qourws I'id, 4 is
extremal in both, field expectatlon @ and connected Green’s function G, and will there-
fore be called the effective action of the second type.

Notice that I'[®, (7] can also be obtained Sequantlally by finding the first effective action

IE[@) = W[j, K] — Wi (160) .
D= W,j, K] (161)

albeit in the presence of the external bilocal source K, and then taking the Legendre
transform of I'4[@] with respect to K

I®, G] == I'K|P] — I'[®1 K (162)

ro| =

(@ |- @) = 'K, .{P]. (163)

Since
' (@ = (W7, K] — @) jn + Wild, K]

= W7, K] | (164)
this rednces again to (153).
A remark is in order concerning the treatment of macrocanonical ensembles. There, an

average particle number is ensured by an external chemical potential u. In our doubled
field notation this corresponds to a constant source

A(‘.D- f— 'L't/l“lj"'?p n—— Kc p. (}:" (165)

tv| p—

where

Kew. — (3 “‘g) (166)

izt the 2 >< 2 matrix for the chemical potential. There are two options of including this
mto the formalism: Either we absorb 4P into A° and replace the propagator G, by
t[16yt -+ KP]"1 in all formulas. Or we leave G, as it is but set the external source K
equal! to KP- at the end, rather than zero. In the latter case, I'[®@, (] is not really ex-
tremal with respect to variations in @ and G (see (158), (159) but satisfies

WD, @] = Ker-d (167)

, 1
Lol @, 6] = —5 Ko»-. (168)
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There ist, however, a simple modification which is properly extremal
reelo, d = e, ¢1 + K‘? p(P2 - &) (169)

aq can be verified by differentiation. Of course, the connection hetween I1®, ] and
&c[®, G corresponds precisely to going from the Hamniiltonian H to the grand canonical
Lnbrgy H — uN.

5.3. Calculation of I'[®, (]

Let us now calculate the second effective action I'[@, G]. For thig we use the differential
equation (152) and insert

‘ 1
to find

1
07 — 55 Vil ) + = VW — "3]7 ViG 4 P — Ty =0. (171

The derivative W; may be expressed in terms of I'®, G] by using the generalization of
relation (42) for the two arguments j, K. To simplify the formulds, let us define, for a
noment,

@1 —_ qj
(172)
1 5
D, = — (G + &)
and the auxiliary effective action
X[ @, Gy| = I'[D, 24, — D7]. (1727)
This has the simpler inverse Legendre transforms
Fc%l:x = —j= “‘?f-1
(173)
g = — K = —j,
such that we may immediately generalize (42) to Wil = —0; or
Wilss" + Wil3h% = —1 (174)
Now we nse
ans — 217,
FrpauX:Fq)M_Q@FG
I3, = 4T g¢ (176)

Tl = 206 — 40T
]‘nux . ]-'d)((’ — 4@,]1@(; - 2FG



Higher Effective Actions 213

to solve (174), (175) for W;; and W, :

}J'\‘

Wi —[133% — [auxaus -1paux)—1 (177)
IT/ i - I/T/ ], F({Jl)g’): Fg;‘,‘}}zﬁl _ - ":‘)— IJ[“,(I T;})G - 2@]1{7(;) ! (-;(} . ( 178)

The latter equation may be used together with (1585) to turn (171) into an equation for
1@, Q]

1
31

1
Wy 1D — = V(@ + D) — 55 Vi[—Gloe 53 + 36D | @] — Tp = 0. (179)

Since 5 and K are not independent sources but related by the constraint (148), there
exists an equivalent restriction upon the combined functional dependence of I'[®, (]
on the two arguments. The constraint itself hag already been used to derive the equation
of motion (179) from (29). Thus we need another functional identity which is independent
of equ. {179). For this we may use directly (177) after inserting W, = 1G:

’L- -== G[Fq)(p - QFG i ]Tr_n(}'ra_c}r(;(,ﬁ]- (180)
For a free theory, the first equation reads

Ty = iGy 1P (181)

and may be solved trivially by

I[®, G} = z— DG, D - Fl6] (182)

where f[(@] is an arbitrary functional of . This is determined by the constraint (180)
which reads

t 1
fol ] = — Gyt — —- G (183)
B B
and is solved by
1 :
AGY = 5 tr (1Gy 1 @) + % tr log 9G-1 -1 const. (184)

In order to proceed with the solution it is convenient to split I" into free and interacting
part

I, (] = I, G] -+ '™, @]
= L i e | L (@ 16) - Ltrog G - T, 6. (185)

Then we have

Iy — —%G—l ot (186)
Tiw = = GG 4 [l (187)

Foo = T (188)
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such-that the interacting part satisfies the differential equation

GBIy == — z" [20G3DINH1 — 20GGTN ]
| T 1 s .

where we have multiplied by @ and contracted indices as we did before with (51). The
right-hand side may be expanded in powers of I} such that the equation takes the form
displayed graphically in Fig. 5. It can be solved iteratively if one respects at each order
the equation of constraint (180} which for the interacting part becomes

(R . | ‘
GI™(®, @] = 5 Gt 4 (GTIGG1 — 2GEIE 1 T (190)

Again, the right-hand side is expanded in powers of I3t and shown in Fig. 5.
To first order we neglect I on the right-hand side of (190) and have

]

1 be
DLyt = — 5 Vod® — o

1 1.
Vit — 5 VG0 — 5 V.60 (191)

G IS @G) 3 Gl + 1 320 m
) Nt

ea6 -5 rega

et

—=G K= Va 4=r615m6,
e ® A=V3

L——-J:I-ml‘

A AT A 66

Fig. 5. The integral equation and constraint for the interacting part of the effective action of second type. The iterative
solution gives the results I'e organized according to powers of ¥=. For completeness we have also written down the
explicit power # such that one gains control gver the semiclassical expansion. The expansion is complete up to 1773
or A8
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This can be integrated in @ to get the first order result (see Fig. 5 for a graphical represen-
tation) |
1 1 1 1 ,
I = —37 V@3 — i Vbt — (V3 + 5 V4Q5) Go + FG] (192)
where f1[G] an arbitrary functional of & only. Inserting this into (190} we find the
constraint:

1
Gf;' — -7 V,G? (193)
such that

iG] = —% V,G? - const. (194)

The resnlt for I is shown in Fig. 1.
To second order we insert the first order derivative

Ihg = ———;‘13— (Vy + V@) (195)
into (189) and find
oI, — ; FValVs 4 Vi) G0 (196)
which is integrated to |
2= E:_T V4(V3 - —;— l*,;CD) o + fAG]. (197)

Inszerted into the constraint we find

GI2 = = V@ + o (Vs + VidP G (198)
such that

5 v T 2 v
D? o 2 VR 4 5 (Vs + Vad) 62, | (199)

To third order we have two contributions in (189)

BIp3 — —% GBD(I2, 1 UTLG2T ). (200)
From (195) and (199) we derive
T ) .
I3 = 5 V@G + o VG2
1 ,
Ihe = —5 (V3 + V@) (201)

1
Pcl:Gz'—Z'ch
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and obtain

i 1 , i
DI, = y V2V, -+ V,@) PG5, (202)
This integrates to
1 .
s = = Vi(Vy -+ ViR 6P+ FIF]. (203)

Now the equation of constraint becomes

1

1 . -
- RN 204)

and may be integrated to
| . | R .
I = is V3G - 5 ViVy + V@R 6. (205)

If we continue this procedure we see the interacting part of I'[®, (] consists of all va-
cuum graphs formed with the full propagators G and vertices 1, and V3 - V,® except
for an important topological restriction: They do not fall apart when cutting two lines.
Such graphs are called two-particle irreducible (TPI).

Our caleulation of I'* has proceeded iteratively in powersof the potential. It can easily
be verified that the same result would have been obtained by starting out with the pre-
viously derived expansion for the first effective acticn I'@] but using the propagator G*
instead of @, and performing the second Legendre transform sequentially according to
(160), (161). Analternative derivation would go via the loop expansion where we summed
all OPI vaceum graphs consisting of propagators G®¥ = w&[7hG, "' - K] and vertices
V), (Vs + V,®@)/k organizing according to the explicit power of 4. In this case the ex-
pansion of I'[@, @] would come out to be the same as in Fig. 5 except for the organization
of the graphs: Now the explicit powers of & count the number of independent loops of the
fully interacting Green’s function G. Thus the second order correction I'? combines a two
and a three loop diagram while I'3 contains three and a four loops. If we want to be com-
plete up to the three loop level we have to take one more diagram from /™ and obtain:

i i h oo
1, G] = Al@] 4 b tr (Ge ™ @) + h 5 trlog 67— ?t ViGd — - VG0
h? v2 C oy 7 B2 (13 R T T ~ Y2 (G5
-y V,G* + Efl"”’z -+ V,@)* G° ig RV G +‘§fi ViVy 4+ VD) G
1 i ; N
+ g MV G — 51 BV, V) G -+ 0%, V. (206)

Here we have displayed the explicit powers of % and kept the term of order 41 such
that one may have the complete expansion also up to powers V® if desired. Our con-
vention is such that Gy, G are the propagators (Tee) in free and interacting cases.
The iterative procedure can be somewhat rationalized by going to reduced variables as is
shown in the Appendix.
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5.4. Equations of motion

The new effective action has two explicit arguments @ and & such that the extrema
determine physical configurations of field expectation and Green’s function. With I
known up to the 3 loop level, the extremality condition (167) reads

1 [ ,
VD Vi s (Vy o Vi) 6

(16 4 Ke2)  — — D[, G] — -

— -g- RV -V, PG — -;1: V2V, + VD) G5

+%%WMG+VMP@+OwJW- (207)

The other condition is most conveniently written by introducing the quantity

2 -4
= "?f(;mt = (I3 Y

el

lf"4®) D+ % Va0 — _3:- WV, = V@) G2 — % B2V 268

=

1 ) _ i
— T V(s o ViR G BVR65 5 82V 4 V@) O O3, V1) (208)

The equation (168) determines how the interacting Green’s function differs from the
free one
G = iG,t - Koo —— XL, (209)

such that X' coincides with the self energy introduced in (54). The equations are shown
in Fig. 6. o

The diagrams contributing to (208) are obtained by differentiating the interacting part
of I'[@, (7] with respect to (. Graphically this amounts to cutting one line and truncating
the two open ends. What remains is called a self energy diagram.

Since this operation is done on two-particle irreducible vacuum graphs the results must
be one-particle irredueible. Thus we conclude that '™ collects precisely all OPI self-
energy diagrams. These are often referred to as proper.

Equs. (209), (208) are known as Dyson’s equation. To lowest order in %,

1 i h
(ithy 1 4 Kooy & — = V@2 4 = VD — 5’ (Vy + V,®) G (210)
- k -1
G - 1 'LGOul ""— KC.D. — (V3 "‘r"' V4®) @ - —2"" TIG - (211)

We have seen before in Sect. 2.5 that the equ. of motion (210), even that the zero loop
level, can accommodate phase transitions which are signalized by the appearance of a non-
vanishing field expectation @. This corresponds to the presence of a condensate of ¢ par-
ticles in the ground state. Equ. (211) extends this picture and allows also for non-zero
density (Typ™) and pair correlation functions (T'yy) in the ground state. It is this pro-
perty which has led to the first successful description of the superconductive state by
Bardeen, Cooper, and Schrieffer and of the Fermi superfluid 3He (for a review see [7]).

At first sight, the presence of a two point function (I'yy) seems to contradict the pro-
perty of particle number conservation of the original action. As a matter of fact, the ex-
trema of the truncated effective action do violate this fundamental law. The relative
fluctuations in particle number are of the order of 1/{total number)1/* and can be made
arbitrarily small only in the thermodynamiec limit if infinitely many particles. Of course
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(:iegm‘?p - < Js‘{‘
3040
-5 P57 ) +O(rVY)

= ]Ga+ KOP -G = _% Iéint
i+ _;2&'/ + % Q _ !?'h O
- ig‘h2‘@__'h2(_@_ + 1 ‘OO’)

3

5 €5 Dot

—_— = _X"V4
— 0 =g

A=A

Fig. 6. The equations of motion for field expectation ¢ and connected Green’s function & as it follows from the effective
action I'[¢, 7] of the second type, The result may be used either up to V? or up to 4°

this is a property of the approximation. If we would known I'l®, (7] exactly, particle
number would certainly be conserved also for a finite system.

Notice that the solution of equs. (207), (208), (209) are completely non perturbative in
nature since both @ and G collect an infinite set of powers in V3, V,. This happens also
if we choose the expansion of I'[®@, @] in powers of V as a starting point rather than the
loop expansion. Which of the two leads to a better approximation caunot be decided
without focussing attention upon a speeific physical system. It obviously depends on the
relative size of the couplings V3 and V.

It should be pointed out that the whole formalism derived here holds alse for fermions
if we watch out that the contraction of indices are done in the proper sequence. Only
the two traces in I'® appear with a changed sign. This leads to same equations of motion
since the source K(x,x,) and the Green’s function G{(x,, x,) are antisymmetric in the two
indices such that

) é bosons e
0G (2,x5) - *OG (£12,)  for fermions (212)
and
B@(f_x)— (:}:7} tr log oG + -37 tr Gy~ 1ﬂ) = (1071 — 1G7Y) (xyx5) {213)
Ly loa P

for both, fermions and bosons while for, example, the one loop eorrection — F',/8 G? 1s

contracted as

1
—® V y(xyaas) Glayc,) Ggr,)
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and therefore adds —(1/2) V{(xya,) Gazxy) to (213) in either case. The only difference is
that the fermion system cannot have a cubic coupling ¥V, nor a non-vanishing field ex-
pectation in the ground state such that (207), (210) is absent and (209), (211), reduce
to the well known Hartree Fock Bogoljubov equations and their generalization (see
lef. [4]).

VI. The Higher Effective Actions

6.1. Higher Legendre transforms

The formation of a condensate is always accompanied by a whole chain of non-per-
turbative effects which runs through all higher correlations function. We have already
seen that the non-vanishing expectation value @ = (@) makes cubic and quartic couplings
release contributions to linear and quadratic pieces in the action {59) by effectively set-
ting parts of the field operators equal to @. At the next level, when minimizing the effec-
tive action of second type I'[®, G|, the propagator determines a non perturbative distri-
bution of particle density and of pairs in ground state. This distribution has an important
feature: It may be of a form which was not present in the original action. For example, if
the action has only a particle number conserving quadratic piece y'w, the ground state
solution G may contain non-zero expectations for the composite pair field yp.
It is easy to convince oneself that once such anomalous expectations exist they may
generate even more new couplings. Even if the original action contains only particle
number conserving vertices (1/2) v,p py ¥y, a non-vanishing anomalous Green’s function
allows, tosecond order, for processesin which four particles come together and annihilate,
i.e. for a vertex function (Tyyyyp). The physical reason is, of course, the presence of a
condensate of pairs, which may add and subtract two particles to any interaction. The
argament can be continued to ciusters of any higher number of particles.
Mechanisms of this type are very important in understanding the properties of nuclei in
which four particle correlations may be very strong as a consequence of the high stability
of alpha particles.
In order to describe such higher non-perturbative effects we may systematically extend
the technique of Legendre transformations and include into the effective action the most
important higher connected Green’s functions of three and four particles. Then the ex-
tremization comprises also these cbservable quantities and one may expect a signi-
ficant improvement at the level of approximate calculations. Actually, the higher
Green’s functions themselves are not the most economic variables to be included into the
list. of arguments. The reason is that some of the information they carry is trivial. We
have seen before in (45) that the connected Green’s function G.‘® contains singularities
in the external legs which are those already known from the connected two-point func-
tion G,® = G. Therefore it is preferable to factor these out and go to the smoother
objects, the three point vertex functions I'g¢q. Since at the zero-loop level Iy = 4., [P]
we find

xg = —Igqq

to be the best variable from which the connected three point function is obtained as
{compare (45))

G® = —in,GB. (214)
Similary we shall take the vertex function

xg = —1'poua

3 Zeitschrift ,,Tortschritte der Physik*, Bd. 30, Heft 4
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as the variable characterizing four-particle correlations. According to (84) the connected
four point function is obtained from this as
G — —in,G* — (PGP + 2 permutations). (215)

We are now ready to introduce the new effective action '@, G, ag, x4]. For this we add
to the original action source terms also for three and four particle vertices.

1 1 . ‘
Asonrce — _3' -LB(];3 . ET L4Q’?4 (—)]6)

and define the generating functional
2[5, Ky, Ly, L] = WK LaLal o (T eiis+(12)g K= (18D Loy ~(1/41) Dag?) (217)

The higher eifective action is then obtained as
I®, G, xy, xg) = Wi, K, Ly, Iy} — Wij — W, K — W Ly — Wi Ly (218)

The new arguments «g, a4 are simply related to the new derivatives of W. Since ¢Z71Z, |
are obviously the three and four-point GGreen’s functions, we have

; 1 1 .
I/I' La - mg G(S) WL‘ — —'-E G(4). 2]9)

Using relations (33), (34) the right-hand sides may be decomposed into their connected
pleces as

1

Wi, = — 57 [G.* + (GG, N + 2 permutations) + G,1)3]
(220)
1
Wi, = ~ I [G.® + (GG, M 4 3 permutations) + (GG 3 + 2 permutations)
+ (. OE MG 4 5 permutations) + G, M4],
With (214) and (215) this leads to the following relations
1
Wi, = — g7 (—inG® 4 3G + &%) (221)
Wi, = — a1 (—2ogG* — 355265 — 4 ,GPD - 3G2 - 6GD? | Y. (222)

By definition, the new effective action I'[®, G, x3, «,] satisfies the following equations

1

T, = — o LG (223)
) . 1
I, = —-?% GHLs + LaP) — 1 2GPL, (224)
1 1 1 1 i
FG:_‘_Q—K"_E‘@ Lz‘l"?Lﬁb +ZG.L4—§-O£3G(L3+L4@)
_iagaL m-E—)—oc2G4L (225)
6 4 4 8 3 4

1 1 1 ;
Iy = —j = K& + 5 OLy + — OLy + 5 O(Ly + L,®) — % xsGL,.  (226)
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Thus '@, G, 53, &4] is extremal for vanishing external sources and represents the proper
higher effective action.

Let us caleulate the new I” by using the previous results for I'f@, @]. For this we notice
that the external sources L;, L, may simply be added to the potentials V;, V. Therefore
at any firved external I, L, we may directly go over to the effective action of the second
type '@, 7] by replacing, in the final results, Vs, V4 by

Va=Va+ Ly,  Vi=TVi+ L, (227)

Using the same argument as in (162), (164) we may perform the further Legendre trans-
formations immediately on ['+4{®, ] and define

I'[D, G, a3, &y] = 72D, G — I'[ste . Ly — sl L, (228)
where
I‘%‘;L4 = W,Lg Fii‘[“ = IVL4'

The formalism becomes slightly more elegant if we do not use the additional sources
Ly 4 but consider the potentials themselves as non-vanishing external sources. Then all
formulas hold with L; replaced by V;. This has the superficial disadvantage that the
equations (223——~26) no longer determmb the physical configurations via a proper ex-
tremum of [, since the right-hand sides have the true potentials V,, ¥, in place of the
vanishing sources Ly, L,. This is completely analogous to the previous discussion of the
chemical potenbial It may be included either in 7G,™1, in which case we may set K = 0
at the end, or in the external sotirce, in which case K Ke.p. corresporlds to the physical
situation. Because of this analogy we shall reserve the symbol I'g-¢- for the true effective
action (215) with the extremality properties (223)—(226). The symbol I" without super-
script will be used for the more economic quantity which is given by

TP, @, xa, 2] = 1D, G] — 'y [P, G] Vy — Iy [®, G|V, (229)

where «g, oq are related to the derivatives as

1
Iy|®, G = — 55 (—ing® - 30D + &) (230)
1
Tp[®, G = — 5 (—ixG — 30%G5 — 4inyPP + 3G2 + 6GP* + &) (231)

and the equations of nmiotion are the same as (223)—(226) except with Lg, L, replaced
by Vi, V,.

FThe connection between I'[®, G, «g, «,] and 185D, (, ag, x,] 18 trivial as it was hefore
in (169). Since the subtraction (229) is done with the full potential V rather than only the
source L the relation (169) extends to the new effective action as

1
rec[®, G, oy, a4} = TP, G, 05, 4] + 5 (D G) Kov- _%i' (—iagG® 1 3GD 1 B2V,

1
— — (—ia, Gt — 30265 — 49, G3D |- 3GE L 6GD? + DY) I,

41
(232)

J*
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6.2. Caleculation of 1@, G, «,, a4]=

From defining equation (229) we see that only the interacting part of I"is atfected by the
new l.egendre transformations such that we may write

F[@, G; X3, “4] - P“[QD, G] + Fint[(p, G; X3, “4] (233)
with (compare (185))

[®, G] = -1-@90—@ 4 4 tr log 1G-T + L. (1Gy1G)
B 5 g 2

and calculate I'"t[@, (7, xg, a,] from (229). Using (206) we find

Iint — —% P3 — % GD + % RV, + V,@) 63
+ % RVAVy + V,®) G — % B(Vy - V)P GS L 04, T3 (234)
ri g e B b L oea(v, - vd) 68 4 - g1
. 11 1 8 6 24
+ % BV, - VD)2 G5 + _i- B3V, D(Vy - V,0) G5 + i]G BT 208
— % WDV, + VD) G5 4 O34, V3). (235)

Comparing this with (230), (231) we may identity the vertex functions as (carrying #
along also there)

| 3
g = (V3 + Vi) — 5 iV(Vy + V) G2 — h(Vy + V@) 63 + O(h2, V3) (236)

s — 3ig2G | Aag@Gh — Vi — 3i(Vy + V, 026 — —f PRV G2 - 4V,OG 1k

— GV BV + Vi) G — 4D(Vy - V, D)2 G + Ok, V)

(237)
or, inserting (236),
3
Xy == V4 - E 'l:fl, V4GZI]4 + O(fl, 173).
These relations can be inverted as
3
Vi + Vi@ = a3 + — thagxyG* + hog®GP -+ O, o®) (238)
V= a, + 5 tha2G? - O(h, &?). (239)

When subtracting the two pieces on the right hand side of (229), the terms linear in the
potentials cancel and those of n-th order in the potential multiply by (1 — »n). Therefore
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we find
) ; _ 1
D, ¢, og, oy} = —]io (Vg - V)2 G — % B3V 2G — T BV(Vg -1 VD)2 G5
{ )
— 357 RV BGS )- % B3 (Vs + V@)Y G5 - O, TY. (240)

Inserting (236), (237) this takes the simple form

!

N

; 1 ;
12,208 — % B g G | o WG — 5} 1305368 - O(h%, x%) .
(241)

Notice that there are no more @ fields in the effective interaction Moreover, since cach
term comes from a vacuum graph in which all ¢ lines have to end in one of the vertices
&3 OT &4, the number of G’s in each term must be equal to (3ny + 4n,)/2 or, expressed
differently, @, «3, o, can occur only in the combination ayG3/2, x,G2, i.e.

'@, @, «g, xg] = f[oc3Glsz1/2G1"2, a4G1/2G’1/2G1/2G1/2].

This may be expressed in differential form as

GF(I”]t == E fXaF;?t ‘}“ 2“4]—';;1': (242)

which will be of use later.

6.3. The equations of motion

Let us now use the new effective action and calculate the equations of motion (223) to
(226) at § = 0, K = K°? and with L replaced by V. Since there are no @ fields in the
interaction, equ. {226) becomes directly (including the powers of #)

1 B ;
(iGo ™t 4 Koy B = o Vo - V03 + — (Vs + Vi) G — % B2V, Gy, (243)

D4

e

bS]

Notice that due to the absence of @ in I'™[®, G, a3, a4] this equation has only a finite
number of terms. All radiative corrections are absorbed in the exact propagator @ and
vertex «,. This 1s a great advantage over the previous equation (207) which followed
froim the effective action of the second type I'®, ]. A similar advantage arises in
the eguation for the self-energy X' = 4Gyt 4 K°oP- — ¢G-1. According to the equation
of motion (225) this is given by

1 _ : |
T=Vyb 4 3 VPt _Z_ Vi@ — ihasGA(Vy - VD) — l} B2x, G2V,
2 .
— 'z— fl20C32G4 1]4 — '}:‘ Fglnt (244)

and involves, at first the whole infinite series arising from the derivative of (241). Due to
the homogeneity equation (242), however, this simplifies since the derivatives ['itt, [int
are directly related to the potentials via the other two equations of motion (223), (224)
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for the vertices, 1.e.

- T N . 3. N 7 .
GFGIDt = - ’_1" )“52043(}3( ]/ 3 ""}' II 4@) — _&;‘ ﬁ3LX32GD ['74 - '1_‘)‘ flSOX 4G4I 3 (245)
Thanks to this circumstance, the sclf energy takes the short form

1 B ; -
T Vb 5 Vi 5 Vil — % haaG2(Vy -+ V@) — —é— R, GRV

1 .
- T)_— ﬁza’32G“ I}_g. (246)

Certainly, the full complexity of the expansion (241) for 10t is now carried by the equa-
tions for the vertices whose first terms are given by

_ 3
Vi = 41ihm G = - = dha 2GR - O(R, 5% (247)

, 3 ,
Vi + Vi@ — 5 thayG?V,y = 31 TGN = g+ RGP - 047, 4% (248)
and which coincide to this order in 4 or » with (238), (239), as they should. We have
displayed the final result graphically in Fig. 7.

The important progress in these equations lies in the possibility of generating vertex
functions non-perturbatively. In fact, there may be solutions of (247), (248) in channels

int _ i 2 . 3
I 06.asa.)- @ ~4g" @
1 44 i =3
wag™ (Y - (R sotia?

X oo e

R P NI O

E:._i;+_12_(‘.\_\'{,~+ﬁ \—~ '

WO o O ERE e

N[

e or 1 v b 3O S

X =V, X - a, —G
-—<=V3 —((=aa

Fig. 7. The expansion of the effcctive interaction action of the fourth type and the resulting equations of ri:otion (compare
(243)--(248)). One may talke cither all terms up to 4* or up to «* depending on the relative size of x, and x,




Higher Effective Actions 225

in which there is no coupling in the original action. We mentioned before that the pre-
sence of anomalous Green’s functions gives automatically rise to non-vanishing expec-
tations of four-particle correlation functions. Equ. (247) makes this statement quanti-
tative. In the four-particle channel, ¥, = 0 such that the vertex function satisfies the
homogeneous equation

x4+ i 102G + Ok, &%) = 0. (249)

2 wipart

Similarly equ. (248) gives rise to three point vertices even if there is no potential V;
at all. If there is a non-trivial solution for (247) or (248) with Vy, ¥, = 0 we may speak of
a spontaneous generation of vertices via fluctuations.
This is completely analogous to the spontaneous generation of a pair correlation {Tywy)
in the self-consistent Hartree-Fock-Bogoljubov equation (211). The yy part of (211) is
referred to as gap equation. Correspondingly we might call (247), (248) ““gap equations”
for vertices.
We have said hefore that a non-vanishing gap (Tyy) corresponds te formation of a
condensate of Cooper pairs. In complete analogy, the new vertex functions «y, x4 signali-
ze the presence of a condensate of three- and four-particle clusters in the many-body
system. The latter are of particular importance in nuclear physics where the forces show
strong attraction in four particle channels. (For a model discussion see the last two of

Rets. [4))1
6.4. Singular potentials

In many realistic problems, the truncated expressions (247), (248) would lead to bad
approximations. Standard intermolecular potentials increase rapidly for distances
shorter than a few Angstrém and may be idealized by a hard core. Similarly, between
charged particles there are Coolumb forces which are infinite at zero moment transfer £.
In both cases, V is singular once in real and once in momentum space. The full inter-
action vertices, however, are rather smooth objects in these singular regions: For the
hard core potential we know from the non-relativistic Schrédinger theory that the
scattering amplitude is well behaved. For charged particles, the infinite range Coulomb
interactions is screened after a finite distance (the Debeye length) and the scattering
amplitude has no longer a k = O singularity.

Thisfact can only be accommodated by calculating oy, x4 to be inserted into the equations
for @ and X not from (247), (248) but finding a better approximation which sums up
infinitely many diagrams contained in 7" in such a way that the vertices come out non-
singnlar. Since the infinitely many diagrams in 7"t become rapidly more and more in-
volved, the most convenient procedure consists in deriving integral equations for the
vertices in terms of the potentials which then may be approximated in an convenient
fashion.

In order to doso we observe that the three-point vertex «; may be obtained from W[4, K]
as

2W e = Wy + 28W,;,W; = —G.® — 2GPD (250)
== g — 2GD. (251)

Using equ. (178) we have
Wg; = — %— G(Lpc Izl — 20) (252)

such that ~; can be obtained from I'[®@, (] as

Goa G = O gel 50 (253)
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Inserting here the separation between free and interacting parts (184) we see that
ag = —2IF% (1 — GG 1. (254)
Therefore the three-point vertex x; satisfies the integral equation
xg == — 204 4 29QG T . (255)

Notice that this result can be employed to rewrite the equation of motion (189) as
Y, 1 1 1 |
int — o _2 (o e — e — — — T — — V¥V 2 2

DIyt = 4 31 DG, 5 V@3 Y V@ 5 VG 5 V.Gd2. (256)

This may be expressed in another way by separating ' as

I’int.[@’ G] :__‘2/_;’: (¢ 1 S I—

V,

1 1 _
o P — % Vi@ — = V602 — = V62 + T[0, ¢, (257)

In other words, I' is meant to collect all terms after the 6 th in equ. (206). This tail piece

of the effective action is very simply related to the vertex x; by

%

f@[qj’ G] == .%'

V4G3(\i3 . (258)

Let us compare this equation with the definition of «; via (230). Inserting (257) we find

7

Ty [®, G = 5

oy 259

Thus we conclude that I'[®, ¢f] can depend on @ only via the combination ¥V, + ¥ ,®,
i.e. I'[®, G] must be an explicit functional only of the vertices ¥,, ¥ + V,@ and G.
Moreover, since the number of @ lines has to be equal to twice the number of ¥, and
3/2 times the number of V; 4+ V,® vertices, the functional I" must have the form

'@, Gl = F[V,G2, (V, + V@) G32] (260
which is indeed true (see (206) and the diagramatic rules for its construction).

Consider now the four-point vertex x,. Let us use Wy for its calculation. From (148) we
derive

— & Wiy = —2Wy;; — Wi W, (261)

From (149) we may rewrite
Wi = Tzli Wiiii + WiW,5; + W3 = 2—11 BGD £ G 4 20D(Wy; — 1GDY  (262)
such that Wy, satisfies the 1dentity
Wik = % (G - 267 — 4G'PD?) - 2W, D (263)
which we shall record for a moment in the form

Win — Wi = % (@ - 262 — 469%) + W, . (264)
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The left hand side may be evaluated in another way by considering one of the two
unused components of the matrix equation

]V?'i}'jrg?gk = *(5{!{
(compare (174), (175)), namely
Wik T3d, + Wi ilge = —1 (265)
which may be rewritten in terms of I" as
., , 1 1
Wy — Wy® = 5 Wyiloelzd — T 2. (266)

But we have just found out (253) such that
) 1
Wix — Wi = ,;_ Wicts@ - = T (267)

Kquating this with (264) gives

) ) 1
% (G, 4 262 — 4GD?) + Wy, ® = -_% Wi — = I (268)
Now we insert (149) in the form recalling (27) and (214))
1
and use the relation
7 AL
'y} — (E GG 4- Fé‘t‘;‘) (270)

2 . 2 . |
= S GG — 266IEN " = — G° 200431 — 2066TEH . (211)

In order to abbreviate the notation it is useful to introduce the repeated i3t interaction
as an auxiliary vertex

{ = —ATPH1 — 20GGTEY1 (272)

In other words, ¢ solves the integral equation

t = —41"&? + GG, (273)
Then
1 - 7 1 .
—EFGG:EGG-{—ZG’L (274)

Inserting this into equ. (267) and using the decomposition (215) for G, we have

) 1
% (—in Gt — 3G — 4GP2) |- (_2- xaG® i(}d)) @
(1
= —= (F x3G® 4 z‘G@) xa G2 - % G (275)

B

i
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sitch that the four-point vertex «4 may be obtained from ¢ as
Xy — 7 "l— 2?:0636}(6\:3. (276)

When ealculating this expression we have to watch out for the proper index contractions.
The term 27x3G”%x4 has to be contracted with the propagator (7 in what we usually called
¢ and u channels of the scattering amplitude. We can convince ourselves at low order in
pertubation theory that the infinite sum (272)

b= —ATEN(1 4 26T — H(GRT? - ) (277)

consists of a one-particle irreducible piece which is symmetric in all four legs and equals
x4 and another one which falls apart by cutting a single line in the ¢ or # channel. These
channelsare definedas follows: Remember that matrix multiplications in (277) is proceeds
in such a way that IJ". is a matrix with a left index pair (12) and right one (34).
Therefore £, 3, is a matrix of such a type. If cutting one line separates the lines (12) from
(34) we speak of an s-channel graph, while those separating (13) and (24) or (14) and (23)
are called ¢ and w channel graphs, respectively. The first terms of the sumn are illustrated
in Fig. 8. Notice that in theory with x; = 0 (as is the case for the equilibrium solution
of Fermi systems) the £ matrix itself is one-particle irreduneible and completely symmetric
in all four lines even though the chain-like summation (277) gives apparently a preference
to the particle index pairs (12), (34).

(Given ¢ we can calculate x; from

xy = —27nt (1 — -;- GGt) (278)
and «, from (276).
rUtos)-3 OO +as @ %@ %@*% @*
g (5304 () 4 S (530
O]
XXY K X“/\) -(X*M;@\X“YV\)
HE P TR P o

mt

TN b TG b CAGE - sty = -2iasGay

e 2O )| eGP
AW ooy | e

Fig. 8. The ¢ and « channel one-particle reducible terms in the £ matrix are removed by adding the term Owc;,(xn Notice
that up to cubic order, the quadratic piece (I'li:)" supplies those terms which make (2), (5), und (6)) completely sym-
metric in all four legs, while (Fi“') does so for the graphs {4). A similar mechanism can be verified to any order.
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The simplest approximation which can now be done is to take the lowest order form of
LMD, (] ~ —1/8V,G? and insert it into {(272). This gives the auxiliary vertex

; -1
| —V, (1 - G-GV,;) (279)

which sums up an infinite chain of bubble diagrams. Physically this accounts for the
repeated scattering among two particles in the system before undergoing a process in
which more particles interact simultaneously. We have remarked before that the sum-
mation gives preference to one channel. There are usually two possibilities and the se-
lection has to he made on the basis of physical reasoning. For example, hard core and
Coulomb singularities in V require the repetition of bubbles in the particle-particle and
particle-hole channels, respectively. Up to now there exists no general criterium for the
best choice which is still a matter of experience.

Given such a ¢ matrix, we can find the three-particle vertex «y from (278). Taking also

here the lowest order expression for I we miay use

i 7 —1 7
063 f— 1’73 (1 ,!,,, ? flGZ-|74) == VB (1 —_ ? ﬁG3V4 - "')- (280)
The vertices ag and oy == ¢ + 293Gy may be inserted into (243) and (246) for a solution
of the equations for field @ and self-energy X.

It vust be kept in mind that the vertices o3, «, obtained from such an approximation are
no longer symmetric in the external legs but exhibit a preferred channel.

VII. Conclusion

The structural framework presented in this paper can serve as a basis for an understand-
ing of a hierarchy of physical phenomena. The equations for the ground state of a Bose
system can systematically be extended to include multiparticle correlations. The gap-
like equations for the vertices collect an infinite number of potential exchanges and can
give rise to couplings which are not included in the original action. In particular, hard
core potentials present no more difficulties and can be treated in a straightforward
fashion.

The decomposition of the full Green’s function G = G2 - @@ into connected and dis-
connected parts yields directly the two fluid deseription of the Bose systems with G0
containing the normal and @2 the superfluid densities. If there are condensates of pairs or
higher bosonic multiparticle clusters, these will give additional contributions to the
total current and the liquid requires a multi-fluid description for its proper understanding.
The dynamical equations follow from the present approach.

For a description of small-amplitude collective excitations, the action I'[®, G, «g, x,}
can be expanded quadratically in all its arguments around the ground state solution and
then extremized. Then not only normal and superfluid components oscillate but also the
vertex functions. In Fermi systems this has already been observed and given rise to a
significant extension [8] of Landau’s theory of Fermiliquids [9]. Tt will be interesting to
set urr and study the analogous equations also for bosons.

Especially interesting will be the study of large amplitude collective equations which has
already become fashionable in nuclear physics. Here the action provides the direct tool
for quantizing any periodie time-dependent extremals olution [10]. Also for tunneling
phenomena, @, G. x5, 4] is an important quantity since the action of solutious along
the imaginary time axis measures directly the logarithm of the penetration amplitude [(117].
All these aspects will be studied in future worl:.
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Appendix

Calculation of I'[®, G]
If we split the effective action
Mo, G = e, G| + o, Gj (A1)

according to (compare (257))

1 1
T, G) = I[®, @] — 57 Va@® — 5 V.

. 1
e

1 _
- 2 .V 2 A D
5 T V0P — = VG + I[P, G (A.2)

then we find from the equ. (189) (compare (256), (258)):

F',') = ";_' V4043G3 (:\.3)
and from (190}
— | Tl 1 .

GFG:TZ-GFGW’H—M?G F(pg-—?(IsTV.;qj) Ny (‘3\4—)

where
xg = — 2081 — 2GECEHY T

satisfies the integral equation
L\'3 — ——2F£&t _i_‘ ZiGZFé%tOCS _= lf'} —{_‘ V4® - zfqn’} - % I74G20C3 + Qiazf(,ga’g. (:\.5)

In equs. (250)—(254) this is shown to be the three point vertex function. Its definition
is given in (221) which becomes in terms of I

_ i
Ty, = 55 %G (A.6)

Comparing this with equ. (A.3) we conclude that I'[@, @] contains the field @ only in the

functional combination

T[®, G| = F[G, V, - V,®, V] (AT

in agreement with the expansion (206). We may now use the equations (A.3) to (A.6)
to caleulate the functional I'. The algebra simplifics by observing that the number
of @ lines in each vacuum graph is determined by the number of V3 -+ V,@ and ¥V, ver-
tices ng; and n, as

(dny + 3ng)/2
such that I is really only a functional of the reduced variables

xy == (V3 + V,@) G772, xg = V,G* (A.8)
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1.0,
f[@, G = flas, xy), ag = —31Gf,, (A.9)
such that (A.6) becomes
xg = —3! iG*3/2fx3. {A.10)
Now, using
— 3
Qr, = E;gth + 2,1, (A.11)
=9 , , 3 .
GZFGG - Z xa“fxgxg —+ 6.’)53:2‘34 fxa:n + 4x,? f.rw, + Zx&fxa T 21’4]‘:04 (A~12)
GI-;QQ) = Gng.FVBVs = ‘1742fx3_.,,3 (A.lg)
G2 321 T 3 2 3 e
I—'Q)G == G I’ 4FV3G pustucein "2— x3x4fxa_r3 + 2l€4 fﬂ'al‘g + "'2_ .14}‘_,‘3 (A.l‘l‘)

equs. (A.D), (A.3) may be written as

£ C

N (3 9 ‘ . -1
f-l's - -3_1 {1 + T)" Xy — 1 ('5 xb’f.z:s + x!lf.rq 'i_ S x32fx;,.1:3 + 3;(/‘3934}‘,,63,,54 TL 2x42fx4:c4)}

2
X (;153 - 3x3x4f:c3x4 - 4‘1342]‘1'31‘4 - gxqfrs) (A15)
1 3 (3 3 ‘
fx. pa Z :L.4f1'31“3 - ? {E x3f_,~:1-3 + 2:U4fx3x1 + ":2"" f-'ﬂa} f-z':;' (44.16)

The iteration may start with 2 = 0 such that the lowest correction is obtained from
(A.15) as

f = {-2— x5 + X(xy) (A.17)

where X (z,) is an arbitrary functional of z,. Inserting this into (A.16) we find

X
foy = 51 %1+ 0@%) (A.18)
vielding the quadratic expression
. _f_ e 2 __"j_ o 2 3
f =15 W+ g 52+ O (A.19)

which may once more be iterated through (A.15), (A.16) to find the cubic terms.

1 1
'—8- ZL'32.'L'4 “;‘— E .’L‘43 (A.QO)

and so on. The resulting series is in agreement with (206). The explicit power of % in a
term xg"™a,” is

1™ (3/2)n Ly 2n (1/2)ng+n+1
b)) wem (o) A= adime, (A.21)
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