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Using the new variational approach proposed recently for a systematxc improvement of the locally harmonic Feynman-Kleinert 
approximation to path integrals we calculate the partition function of the anharmonic osctllator for all temperatures and coupling 
strengths with high accuracy. 

1. Some time ago, Feynman and Kleinert [ 1 ] extended the variational approach to Euclidean path integrals 
developed earlier by Feynman in his textbook on statistical mechanics [2 ], improving greatly the accuracy at 
low temperatures. A similar extension was found independently by Giacetti and Tognetti [ 3 ] who applied this 
method to several statistical systems [4]. The approach is particularly successful in systems in which the quan- 
tum effects do not produce essentially new phenomena, their main result being a modification of the quasi- 
harmonic properties of a system. This happens in quantum crystals [ 5 ] where experimental data can now be 
explained very well. The approach yields a good approximation to the effective classzcal potential V~ff,¢i at all 
temperatures and serves to calculate the free energy of the system as well as particle distributions at all coupling 
strengths, including the strong coupling limit. 

The purpose of  this note is to present results of a recently proposed systematic improvement [ 6 ] of  this 
method for the anharmonic oscillator carried out to third order in the coupling strength. The results turn out 
to be in excellent agreement with precise numerical values of the free energy [ 7 ] at all temperatures and cou- 
pling strengths available in the literature. 

2. Let us briefly review the Feynman-Kleinert approach. The aim is to write the partition function as a clas- 
sical configuration space integral over a Boltzmann factor involving an effective classical potential V, ff, cl (Xo), 

Z =  ~ dxo ex ~ / M  P[-flV'fccl(x°) ] ' (1) 

with fl-= 1/kBT. The variable Xo is equal to the time-averaged position .~=f~# d zx ( r )  of the fluctuating path. 
The effective potential V~ff, cl(Xo) is defined by the path integral 

exp(-flVeff,¢l) = Z  ~°= ~ ~x~(:f-Xo) e x p ( - M / h ) ,  (2) 

with the Euclidean action 
*p 

~¢= ] dr  [ ½M3¢2+ V(X)  ] , 

o 
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where tI(~-Xo) =x/2rch2f l /Mr(X-xo)  restricts the path average Y to the value Xo. The paths are periodic in 
hfl. We shall refer to Z ~° as a restricted partition function. The usefulness of separating out £ derives from the 
fact that at any temperature the fluctuations rarely carry x(z)  far away from £. This allows approximating the 
deviations from £ in a quasi-harmonic way. One reexpresses the local partition function as an expectation value 
within a harmonic trial system whose action is, for each Xo, 

n# 

d ~  = ½M j dT [:~2+~22(Xo) (X-Xo) 2 ] , (3) 
0 

and chooses g22(Xo) optimally. With the help of ~¢~, the defining expression (2) can be rewritten as 

exp[-flVeff, c~(Xo)] = (Z~°)-~ (exp [ -  (sO-  ~¢~) /h]  ) ~  (4) 

for any 12(xo). The subscript t2 stands for the trial system in which the expectation is calculated and the su- 
perscript Xo indicates the restricted value of ~. 

The expectation value on the right-hand side of (4) cannot be calculated exactly. A lowest-order approxi- 
mation is found with the help of the Jensen-Peierls inequality 

(exp[  - ( M -  M ~ ) / h ]  )~o >_-exp( - ( M - M ~ ) ~ ° / h ) .  

The harmonic expectation value in the exponent of the right-hand side yields the approximation W1 for the 
effective classical potential 

Vefr, d(Xo) ~-, W~ (Xo) = V~(xo)  + Va2(Xo) - ½Mt22(xo)a2(xo) . (5) 

The first term is the logarithm of the restricted partition function of the trial system -ln{½hflt2(Xo)/ 
sinh[½hflt2(Xo)]}/B, the last two terms are the restricted expectations ( V ( x ) ) ~ = V , a ( X o )  and 
½Mg22(Xo) ((x--x0)2)~---½Mt'22(xo)a2(xo). In the last equation we have abbreviated the restricted square 
deviation ( (X-Xo)2)-~ by 

1 
aZ (xo ) -  MflI22 [½hflt2 coth(½hfll2)- 1 ] .  (6) 

The first term is the usual thermal expectation ( x 2 ( z ) ) ;  the second term subtracts from this the square de- 
viations of the temporal average £ from Xo. The restricted expectation of the potential is obtained by a simple 
Gaussian smearing process of width a 2 (Xo), 

t~ dx 
Va2(Xo) = )oo ~ V(X) exp[ - (X-Xo)2/2aZl  . (7) 

The best approximation is obtained by minimizing the function WI (Xo) with respect to I2(xo), which yields 
the condition 

2 0 
t22= - - - -  V,,,(Xo) . (8) M rga z 

The resulting W~ (Xo) is always slightly larger than the exact effective classical potential Vefr.cl (Xo). 
Equations (6) and (8) are solved numerically. The resulting approximation to the partition function, 

oo 

5 ~ x /  dxo M exp Z l  = 2 n h : f l /  [ - f lW1 (Xo)  ] , 
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Table 1 
Free energy oftbe anharmonic oscillators with the potential V(x) = ½x2+ ¼gx 4 for different g andfl= 1/kT. 

17 January1994 

g P f~ F3 F,~ 

0.002 2.0 0.427937 0.427937 0.427741 
0.4 1.0 0.226084 0.226075 0.226074 

5.0 0.559155 0.558678 0.558675 
2.0 1.0 0.492685 0.492578 0.492579 

5.0 0.699431 0.696180 0.696118 
10.0 0.700934 0.696285 0.696176 

4.0 1.0 0.657396 0.6571051 0.6571049 
5.0 0.809835 0.803911 0.803758 

20 1.0 1.18102 1.17864 1.17863 
5.0 1.24158 1.22516 1.22459 

I0.0 1.24353 1.22515 1.22459 
200 5.0 2.54587 2 50117 2.49971 

2000 0.1 2.6997 2.69834 2.69834 
1.0 5.40827 5.32319 5.31989 

10.0 5.4525 5.3225 5.3199 
80000 0.1 18.1517 18.0470 18.0451 

3.0 18.501 18.146 18.137 

leads to the free energy F1 = -- k s T l n  Zl which describes the true free energy F =  - kBTln Z of  the system quite 
well at all temperatures. Reference [ 8 ] explains why this is so. 

For  the anharmonic  oscillator potential 

V(x)  = ½0a2x2 + tgx  4 , 

eq. (8)  leads to the following equation for the optimal Q, 

2 2 - l Q =3gXo+3g-ff~ [½~ipQ coth(½hpQ) - 1 ] + 1.  (9) 

The resulting free energies are listed in table 1 for comparison with the improved results to be derived in this 
note. 

3. To go beyond the above approximation we split the action into a free part ~¢o and an interacting part 
~¢~n~. The first contains all classical terms depending on Xo plus the trial action ~ o  of  eq. (3),  the second term 
all the rest. The parti t ion function can then be rewritten as 

•f S-oo 2 - ~ l m e X p l  
dxo dxo 

z =  _ =: ~12~h 2 M M  Z~° = V ( x o ) / ~  ] < exp ( - , . ~ / ~ )  > ~>. (10) 

In  the previous section, the Jensen-Peierls inequality was used to approximate the expectation value on the 
fight-hand side of  (10).  Now we evaluate this expectation perturbatively, expanding the exponential function 
in a Taylor series, 

1 1 1 ) 
Z X ° = e x p [ - f l V ( x o ) ] Z ~  ° 1 -  ~ < d ~ t ) ~ ° +  ~ < (,~¢~t)25~ ° -  ~ < ( d ~ t ) 3 ) ~ +  . . . .  

and going over to the connected parts by a reexpansion into cumulants, 

321 



Volume 184, number 4,5 PHYSICS LETTERS A 17 January 1994 

1 1 ~o2~o  1 ) X0 xo ( ' J ~ m t ) )  *'2,c "~ . . . .  ( 1 1 )  Z ~ = e x p  -flV(xo)-flV~ °- -h ( M m t ) a  + ~-~ ( ( ' ~ , n t ) ) f J , c - -  ~ ( x0 3 xo 

The truncated exponents 

1 d x  o 1 1 W,,(Xo) = V(xo) + V~ ° + ~ ( ,nt )~o __ 2 ~  ( (d~ ' )2)~ 'c  + 6 ~  ( (~¢mX°)3)'% +"" 

(--1)U ( M , , t ) ) a  (12) 

are optimized in 12(Xo) and yield the successive approximations to the effective classical potential V.tr, cl(xo). 
The lowest approximation W~ (Xo) obviously coincides with the Feynman-Kleinert approximation. 

We study the behavior of Wu(xo) up to N= 3. The condition of an optimal g2(Xo) cannot always be met by 
an extremum of Wu(xo), since for higher N> 1 the condition O Wu(xo)/O~2(Xo) = 0 does not always have real 
solutions t2(Xo). This happens for example at N=2.  In such cases, an optimal result is obtained by enforcing 
a minimal dependence on t2 via the disappearance of the second derivative of Wu(xo) with respect to Q(Xo). 

To calculate the restricted expectation values in eq. (12) we consider polynomial-like potentials in view of 
the intended quantum field theoretic applications. The interaction ~¢~t is expanded around Xo 

~# 

f ( g2 (X-xo)2+g3 (x-xo)3+g4 ) ~t,,x°t= dr ~. ~. ~. (X-Xo)4+... , (13) 
0 

defining the coupling constants 

g, = V(')(Xo) --~26,, 2 . ( 1 4 )  

Then (12) is obtained by calculating all connected vacuum diagrams formed with vertices g,/n!h and lines 
which stand for the correlation function 

1 ( cosh[½hf lg2( l -2 l z - z ' l /h f l ) ]_ l )  (15) 
G(2)(r, r ' ) =  Mflf2 2 ½hf l£2 sinh(½hflg2) ' 

in which the first term is the usual Green function ( x ( z ) x ( z ' ) )  of the harmonic oscillator while the second 
term subtracts from this the zero-frequency part (X2o)= 1 lilY2 2. 

The number of Feynman integrals to be calculated is reduced in three ways. First, only one-particle irre- 
ducible vacuum graphs contribute (i.e., there are no tadpole diagrams) due to the absence of the zero-frequency 
modes in t~x(z) =x(¢)  -Xo. Second, Feynman integrals of subdiagrams which touch the rest in one vertex can 
be factored out. Third, diagrams with vertices g2 (mass insertions) can be obtained from those without these 
vertices by replacing the frequency g2 by f ] = ~  and expanding the result in powers of g2. 

4. We now turn to the application to an anharmonic oscillator with the potential 

V ( x )  = ½oFx2 + ~gx 4 . 

The interaction is 

x°-- f ( ~2 (t~X)2(T)+g3 (t~X)3(T)-I-g4 ) 

(we use natural units with h=M= 1 ), with the coupling constants 

g2=(092-122)+3gx~, g3 =6gxo, g4 =6g .  (16) 
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The quadratic coupling ½g2(8x)2(r) is now included into the harmonic trial potential term by changing it to 
½~2(X-Xo)2 with the modified frequency ~ introduced above. The third-order approximation 

W 3 ( f l )  V(xo)+V~+~ xo xo 1 ~o 2 xo 1 ( ~ ¢ , . t ) ) ~ , c  = ( ~ , . , ) , ~ _ 2 ~ ( ( ~ ¢ , . , ) ) a c + 6 ~  ( ~o 3 xo 

has the diagrammatic expansion 

° ' ( ÷  o ° ) w,(fl)=V(xo)+ - t 0 %  OO -~. + + ( X ) ~  
3 72 

24 

(17) 

© + o: o + @+ ©+ o¢ )]. 
648 648 3456 1728 1728 

The number under each diagram counts in how many Wick contractions it appears; this number multiplies 
the prefactors. 

Only five integrals corresponding to the diagrams 

o, ©, © , ©  
need to be evaluated explicitly. The remaining diagrams follow by differentiation with respect to ~t~2 and fac- 
torization into subdiagrams touching each other at a point. 

In quantum field theory one is used to calculate Feynman diagrams in momentum space. At a finite tem- 
perature this requires performing multiple sums over Matsubara frequencies. To higher order, they are hard 
to do in closed form. In the present case of a (D= 1 )-dimensional quantum field theory it is more convenient 
to evaluate the diagrams in z-space as integrals over products of the Green function (15 ). For example, the 
diagrams 

o,@ 
require the integrals (before replacing Q - ~ )  

~p ~p ~p ~p 

hfla 2- f G'Z)(z,z)2dz, hfl(1/.O)2a3 6 -  ~ f f G'2)(z,, rz)G'2)(z2, z3)G'2)(z3, zx)dz, dz2 d'r3, 
0 0 0 0 

respectively. The factors hfl are due to an overall z-integral, the powers of 1/12 arise from the remaining ones. 
The parameters am have the dimension of a length, the subscript indicating the number of vertices in the dia- 
gram (defining a l 2 ----a 2). In terms of these two Feynman integrals, the integral associated with the last diagram 
in (18) is given by the product 

£ ~  ~--hfl(1/g2)2ara( a2) 3 . 

The symbol ~ indicates that the right-hand side is only the Feynman integral of the diagram without the factors 
g,,/n!h associated with the vertices. 

The explicit expressions for the different Feynman integrals are, with the abbreviation x =  h,O12, 
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0 = T r  log G(2)--- -2flV~ = - 2  log 
sirth(½x) 

½x 

_~hfl(1/t2)a~ , 

1 1 
a~ = (h/t2)3 24x 2 sinh2 (½x) ( - 2 4 -  4x 2 + 24 cosh x +  x 2 cosh x -  9x sinh x ) ,  

@ ~hp(1/t2)a82, 

1 1 
a 28 = (h / t2 )  4 768x 3 sinh 4 (½x) ( - 864 + 18x4+ 1152 cosh x +  32x 2 cosh x 

- 288 cosh 2 x -  32x 2 cosh 2 x -  288x sinh x +  24x 3 sinh x +  144x sinh 2 x +  3X 3 sinh 2x) ,  

@ ~h~8(1/g2)2at °, 

1 1 
a t  ° = ( h / ~ )  s 2304x3 sinh4(½x ) ( -  3 4 5 6 - 4 1 4 x 2 - 6 x 4 + 4 6 0 8  cosh x 

+ 4 9 6 x  2 cosh x -  1152 cosh 2 x -  82x 2 cosh 2 x -  lO08x sinh x -  16x 3 sinh x +  504x sinh 2 x +  5x 3 sinh 2x) ,  

@ ~hfl(1/K2)2at 2, 

1 1 
a tE = ( ~ / ~ 2 )  6 49152x 4 sinh6(½x) ( - 107520-7360x2+624x4+96x 6 

+ 161280 cosh x +  12000x 2 cosh x -  777x 4 cosh x +  24x 6 cosh x -  64512 cosh 2 x -  5952x 2 cosh 2x 

+ 144x 4 cosh 2x + 10752 cosh 3 x +  1312x 2 cosh 3x + 9x 4 cosh 3 x - 2 8 8 0 0 x  sinh x + 1120x 3 sinh x 

+ 324x 5 s inh x +  23040x sinh 2 x -  320x 3 sinh 2 x -  5760x sinh 3 x -  160x 3 sinh 3 x ) .  ( 18 ) 

To obta in  the d iagrams involving g2 we replace, as explained above, 12 by  ~ and expand  in powers o f  g2/2h, 

(3(3=(33 CC) QO, ½ =½ 
3 3 24 72 144 6 6 108 

72 72 864 864 
24 24 576 

Note  that  the dot  being associated with the vertex ½g2 is equal to halfa mass insert ion.  The numbers  undernea th  
the d iagrams are thei r  mult ipl ici t ies;  they act as factors. 

The  expansion o f  the trace log follows a different  pa t te rn  since the one-loop d iagram requires a reexpansion 
o f  the logar i thm p ic tured  by it, 

d-- © 0 - 2 0 + 0 - t  
2 

8 
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As an example, consider the Feynman diagram 

( ~  =2(g2/2h )2hfl la'~ . 
2 

It is obtained from the second-order Taylor expansion term of the trace log as follows, 

1 0 2 xO 2 2 2 
2(g2/2h)2hfl a24= 2! (002)  2 (-2flV~)a2=a2(~ -12  ) 

The differentiation yields 

1 1 
aJ = (h/12) 2 8x sinh2 (½x) ( 4 + x 2 - 4  cosh x+x sinh x) , 

corresponding to the Feynman integral 

hflla~= ~ G 2 ( r 2 - z , ,  dr, dr2. 
0 0 

Similarly we find the Feynman integrals 

0 --hfl(1/t2)a~, 

1 1 
a 6 = (h/I2) s [ - 3x cosh(½x) + 2x 3 cosh(½x) + 3x cosh(~x) 

64x sinb3( ½x) 

- 48 sinh (½x) + 6x 2 sinh (½x) - 16 sinh (3x) ] ,  (19) 

@ ~hfl(1/t2)2a~, 

aS3=(h/I2) 4 1 1 [45xcosh(lx)_6xS cosh(lx)_45xcosh(~x) 
288X 2 sinh3 (½x) 

- 432 sinh (½x) - 54x 2 sinh (½x) + 144 sinh (~x) + 4x 2 sinh ( I x )  ] , (20) 

Q ~hfl(l/.Q)2a~p, 

1 I 
a~ ° = (h/Q) 5 4096x 3 sinh 5 (½x) [ 672x cosh (½x) - 8x 3 cosh (½x) + 24x 5 cosh (½x) - 1008x cosh ( I x )  

+ 3x 3 cosh (~x) + 336x cosh ( I x )  + 5x 3 cosh (~x) - 7680 sinh (½x) - 352x 2 sinh (½x) + 72x 4 sinh (½x) 

+3840 sinh(~x) +224x  2 sinh (3x) + 12x" sinh (~x) - 768 sinh(~x) - 6 4 x  z sinh (~x) ] ,  (21) 

obtain the graphical expansion for IV3 (x o) (the multiplicities of  the diagrams have been canceled by the (n!)- 
denominators of  the couplings g,,/hn!; now the vertices represent only g,,/h), 

325 



Volume 184, number 4,5 PHYSICS LETrERS A 17 January 1994 

+6[ 0 +3 ~+3(;~ O0 +½ (~C))+3(' ,~  +~@) 

corresponding to the analytic expression (in the same order)  

l / 1 ~ 2 a 4  4 2 i 2 6 1 ~2,,~8..l_ W 3 -~-  V(Xo) "4" V ~  "-I- ( ½g2a2-1 - ~g4a 4) -- ~ ~ i s 2 2  -b ½g2g4a2a -t- ggaa2 -I- ~ s , , , 2  - ~g~a'~a 4) 

1 
+ - ~ g 2 g 3 a 3 + a [ ~ g 2 g 4 ( a ' ~ ) 2 + ½ g 2 g 4 a ~ a 2 ] + 3 (  ~g394a3a2 s 2 + ]g3g4a32 ~0) + ~ {g]a~ 3 2 s 

+ 3 [ ~ g 2 g 2 ( a 4 ) 2 a 2 + !  2 10 2 6 4 3 3 4 2 2 3 10 2 3 12 gg2g4a 3, "+ ~g2g4a3 a ] -}- [ -~g4(a2a  ) + ~ g 4 a 3 , a  +~g4a3 +~ga4a~a'*]} (22) 

The best t2(Xo) is found numerically by searching for the roots o f  the first derivate o f  W3 with respect to £2. 
There ar many solutions and we must  pick the right one, which we take to be the one closest to the unique 
solution found at the lowest order (where the Jensen-Peieds inequality ensured its existence). 

Figure 1 shows the approximations WI,2.3 over the variational parameter  I2 for g = 4  and f l=  1 at Xo=0. The 
new extremum lies indeed near the old one. Note that W2 has no extremum as remarked before, but the curve 
has a very small slope and the point  of  smallest O-dependence is easily identified. In fact, the O-dependence 
decreases rapidly with increasing order reflecting the fact that the exact W~ is completely independent o f  the 
choice o f  I2. 

The corresponding results for the free energy F =  - ( 1/,0) In Z are listed in table 1 and compared with the 
precise values F ~  of  ref. [ 7 ]. 

To third order, the new approximation gives energies which are better than the lowest order results by a factor 
o f  30 to 50. They differ f rom the exact results only in the fourth digit. 

In the high-temperature limit, all W~v tend to the classical results (which, in turn, become exact). It is there- 
fore not astonishing that for small fl, the approximations W3 and W1 are practically indistinguishable. Figure 

W 
-I 98 

-2 02 

-2O4 

. ~2~06 

w 

/ ~ 4 ) 6 ! ~  

Fig. 1. Effective potential V~versus ~ for g= 4 and fl= 1 at xo= 0. 
Curves 1, 2, 3 show the approximations W~3, respectively. While 
W~ and W3 have an extremum at ~2~3.7, the second-order ap- 
proximation W e has only extrema in the complex plane. 

. . . . .  ~ . . . .  ~0 . . . .  8~0 . . . .  ~ ~ 

. . . . .  | 

. . . . . .  2 
3 

Fig. 2. Approximations W~.2,3 for the effective classical potential 
V~versus fl for g=4 and xo=O with optimized £2. Curves 1, 2, 3 
show the approximations Wz,2,3, respectively. The dotted line is 
the asymptote of W3. 
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Fig. 3. Effective dimensionless coupling constant g'ti/~3= 
g ~ / ~  (g) of the new perturbation series versus g~/~3 m the lust 
and third approximation Wi and Wa, respectively (axes are la- 
beled setting ~=g2= 1 ). 

2 shows the dependence  o f  W i , 2 ,  3 o n  ft. F o r  increasing fl, the difference between the first approx imat ion  and 
the o ther  curves increases. 

The worst  possible  case is T =  0, where the d iagrams become simplest  and  have been given before [ 6].  

5. Conclusion. We have presented  a systematic  improvemen t  o f  the F e y n m a n - K l e i n e r t  approx imat ion  up to 
th i rd  order.  F o r  the anha rmon ic  osci l la tor  the free energy was obta ined  with an error  less than 0.04% for all 
coupling constants  g and all temperatures .  In  compar ison  with the previously avai lable lowest-order  approx-  
imat ion,  the accuracy is increased by about  a factor  30. 

The vir tue o f  the improved  var ia t ional  approach  lies in the abi l i ty  to yield very precise results for all coupling 
constants  and  temperatures .  This  is in contrast  to o ther  methods  which are appl icable  only in selected l imit ing 
tempera ture  or  coupl ing constant  regimes. 

The improvemen t  with respect  to the o rd inary  per turba t ion  expansion is due to the fact that  the new per- 
turbat ive  expans ion  has an effective coupl ing constant  g'~/f23--g~/£23 (g) ,  which remains  small  even for g - ,  
(see fig. 3).  

Certainly,  the accuracy can be increased by  calculating higher-order  terms. The complexity,  however,  in- 
creases rapid ly  with increasing orders.  Thus higher-order  calculat ions will require  much more  work. 

In  this note,  we have presented  only the free energy o f  the anharmonic  oscillator. Other  quant i t ies  l ike par-  
t icle d is t r ibut ions  can be ob ta ined  qui te  similarly. This  will be done in future work. 
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